

High Performance Vector Control Inverters FRENIC 5000VG7S Series

THE INVERTER FRENIC 5000VG7S

The world's finest inverter. The best control capability. The most requested functions.

FRENIC5000VG7S is our highest performance vector control inverter developed using Fuji's leading technologies for the 21st century.

The inverter has a multi-drive function for high performance control of motors, worldwide.

System integration with UPAC

(optional card incorporating user-programmable functions)

enhances the capabilities of machines and devices such as vertical transfer equipment (cranes, multi-storied parking facilities), winding machines, injection molding machines, textile machines and steel production lines.

These enhancements allow comprehensive cost reductions. The wide range of capacity, conformity to international standards, and multi-language KEYPAD make the inverter ready for applications all over the world.

The industry's best control performance

- The multi-drive functions feature vector control, sensorless vector control, V/f control and vector control for synchronous motors.
- Vector control with dedicated motors has attained the industry's best control performance such as speed control accuracy of ±0.005%, speed response of 100Hz, current response of 800Hz and torque control accuracy (linearity) of ±3%

System integration

- UPAC, the optional card incorporating userprogrammable functions, enables user-original system configuration and construction.
 Dedicated package software products are also available.
- The RS-485 communications function is provided as standard and T-Link and SX bus communications functions are available as options.
- Inverter support loader for Windows is supplied to facilitate function code setting.

FRENIC 5000VG7S CONCEPT

A wealth of built-in functions

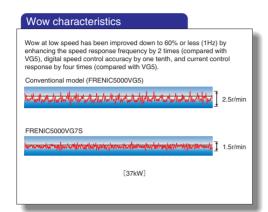
- Tuning function to control various motors optimally.
- Load vibration suppressing observer function and load adaptive control function.
- Position control function such as zero speed lock.
- Position synchronization control using pulse train input (Option).
- Advanced orientation control (Option).

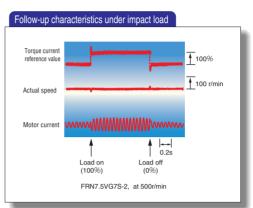
Capacity range expanded

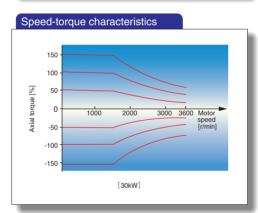
A wide range of capacities and applications

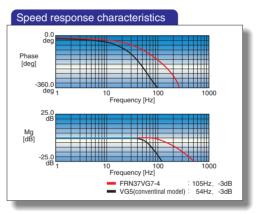
- A single specification with a capacity range from 0.75 to 630kW makes system configuration simple.
- ●Optimal control is achieved with the CT use (constant torque) for 150% overload capability, the VT use (variable torque) for 110% overload capability and the HT use for 200% overload torque.

Global products


- A standard product, conforming to UL/cUL and CE marking, allows unification of devices and machines made at home and abroad.
- The KEYPAD has 8 user interface languages as standard to make export simple.
- Interfaces with various fieldbuses (Option).


This high performance vector control inverter has complete control over speed and torque




The industry's best control performance

- Speed control accuracy of ±0.005% (tested with a dedicated motor with PG under vector control: one half compared to our conventional model).
- Speed response of 100Hz (tested with a dedicated motor with PG under vector control: twice compared to our conventional model).
- Current response of 800Hz (tested with a dedicated motor with PG under vector control: four times compared to our conventional model).
- ■Torque control accuracy (linearity) of ±3%.

^{*} Torque control accuracy is $\pm\,5\%$ for the motors with a capacity larger than 55kW. Contact Fuji Electric FA representative if further accuracy is required.

Use with different control types (multi-drive function)

- ■You can select four types of control for different motors.
 - ·Induction motors: vector control, sensorless vector control, V/f control
 - ·Synchronous motors: vector control (optional card required)

A wide range of capacity/flexible applications

- Simple system configuration based on a single specification with a capacity range from 0.75 to 630kW.
- A standard product that meets three specifications types.

Specification type	Overload capability	Main application	Carrier frequency
CT	150%	Constant torque applications	High frequency
VT*	110%	Variable torque applications	Low frequency
HT	200%/170%	Vertical transfer applications	High frequency

^{(*):} One class smaller model applicable

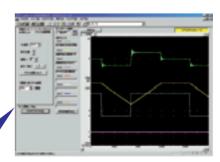
Built-in user-programmable functions (option as UPAC)

- •Users can personalize inverter control and terminal functions in order to build an original system using the programmable functions of UPAC (User Programmable Application Card).
- Dedicated package software products for tension control, dancer control and position control are provided.

Personal computer **UPAC System** Inverter support loader Inter-inverter link (optical or simplified RS-485 communication). UPAC support loader Min. 2ms cycle on optical communication (Equivalent to D300win) ·RS-485/RS-232C converter (Recommended: NP4H-CNV) RS-485 (38.4kbps) ·USB-RS-485 converter (System Sacom Sales-made) UPAC is installed only on a master VG7S inverter An inverter link option is installed on each inverter FRENIC5000VG7S dedicated motors or general-purpose motors

Enhanced network readiness


- ●The RS-485 communications function is provided as standard, and the T-Link and SX bus functions are provided as options.
- •Interfaces with various fieldbuses such as PROFIBUS-DP or DeviceNet are available.


Inverter support loader provided

• An inverter support loader for Windows is available as an option to facilitate function code setting.

You can set an operational environment easily with the inverter support loader software by connecting to your personal computer over built-in RS-485 interface (max. 38,400bps).

The loader runs on Windows95/98 and NT. Real-time trace and historical trace are incorporated along with operation monitor and function settings.

Enhanced built-in functions

- Improved tuning function
 Motor parameters can be tuned while the motor is stopped.
- Built-in observer function for load vibration suppressing
- Equipped with load adaptive control function Stepless variable double-speed control is possible at light load.
- Increased position control function
 - ·Zero-speed locking control.
- Position synchronizing control using pulse train input (Option).
- ·Orientation control (Option).
- Vector control is applicable to two types of motors.
 Also, V/f control is applicable to the third motor.
- Built-in braking unit
 Built-in braking unit for 55kW or smaller models (200V series) and for 110kW or smaller models (400V series) allows downsizing machines and devices.
- ●23 I/O terminal points

	Input	Output
Analog	3 points	3 points
Digital	11 points	6 points

Built-in PG interface card

Both 12V and 15V voltage inputs are accepted. The card can handle line drivers as an option.

Upgraded maintenance/protective functions

- ■I/O terminal checking function
- Main circuit capacitor life judgment
- Inverter load factor measure
- Records and displays accumulated operation time
- Displays operating conditions such as output voltage, heat sink temperature and calculated torque value
- Detailed data is recorded on inverter trip
- Setting the thermal time constant of the electronic thermal overload protection makes different motors applicable.
- Standard protective function against input phase loss. Protects the inverter from damage caused by power line disconnection
- Motor protection with PTC thermistor
- Equipped with terminals for connecting DC REACTOR that can suppress harmonics

Interactive KEYPAD for simple operation

- Standard copy function
 Easily copies function code data to other inverters.
- Remote operation capability
 The KEYPAD is detachable for remote operation using an optional cable.
- 8 standard language interfaces (English, German, French, Italian, Spanish, Chinese, Korean and Japanese)
- Jogging operation from the KEYPAD or with input from an external signal
- Switching between KEYPAD operations (LOCAL) and external signal input operations (REMOTE) using the KEYPAD

Conformity to world standards

Standard conformity to EC Directive (CE Marking), UL and cUL standards enables unification of specifications at home and abroad

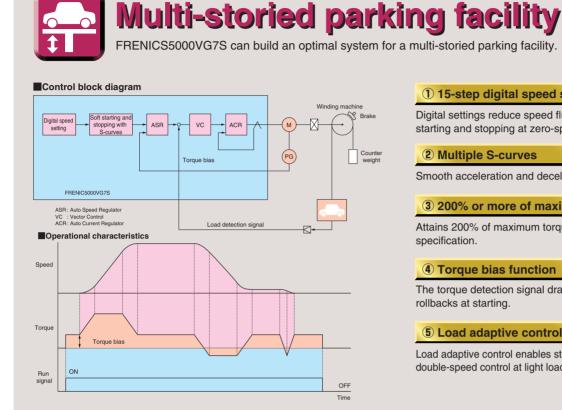
Conforms to the European EMC Directive with optional EMC filters

Note: Among FRENIC5000VG7S series, only 400V series conform to the EN standards.

Europe

North America/Canada

EC Directive (CE Marking) UL and cUL standards


Triple ratings (CT use, VT use, and HT use) and a wide variety of models from 0.75 to 800kW make system configuration easy!

		200V	Series			400V S	Series	
	Applicable inverter	Applicable inverter	Applicable inverter	Dedicated motor	Applicable inverter	Applicable inverter	Applicable inverter	Dedicated motor
lominal applied motor (KW)	CT use (150%)	VT use (110%)	HT use (200%/170%)	Common to all uses	CT use (150%)	VT use (110%)	HT use (200%/170%)	Common to all uses
0.75	FRN0.75VG7S-2			MVK8095A				
1.5	FRN1.5VG7S-2	FRN0.75VG7S-2		MVK8097A				
2.2	FRN2.2VG7S-2	FRN1.5VG7S-2		MVK8107A				
3.7	FRN3.7VG7S-2	FRN2.2VG7S-2	FRN3.7VG7S-2	MVK8115A	FRN3.7VG7S-4		FRN3.7VG7S-4	MVK8115A
5.5	FRN5.5VG7S-2	FRN3.7VG7S-2	FRN5.5VG7S-2	MVK8133A	FRN5.5VG7S-4	FRN3.7VG7S-4	FRN5.5VG7S-4	MVK8133A
7.5	FRN7.5VG7S-2	FRN5.5VG7S-2	FRN7.5VG7S-2	MVK8135A	FRN7.5VG7S-4	FRN5.5VG7S-4	FRN7.5VG7S-4	MVK8135A
11	FRN11VG7S-2	FRN7.5VG7S-2	FRN11VG7S-2	MVK8165A	FRN11VG7S-4	FRN7.5VG7S-4	FRN11VG7S-4	MVK8165A
15	FRN15VG7S-2	FRN11VG7S-2	FRN15VG7S-2	MVK8167A	FRN15VG7S-4	FRN11VG7S-4	FRN15VG7S-4	MVK8167A
18.5	FRN18.5VG7S-2	FRN15VG7S-2	FRN18.5VG7S-2	MVK8184A	FRN18.5VG7S-4	FRN15VG7S-4	FRN18.5VG7S-4	MVK8184A
22	FRN22VG7S-2	FRN18.5VG7S-2	FRN22VG7S-2	MVK8185A	FRN22VG7S-4	FRN18.5VG7S-4	FRN22VG7S-4	MVK8185A
30	FRN30VG7S-2	FRN22VG7S-2	FRN30VG7S-2	MVK8187A	FRN30VG7S-4	FRN22VG7S-4	FRN30VG7S-4	MVK8187A
37	FRN37VG7S-2	FRN30VG7S-2	FRN37VG7S-2	MVK8207A	FRN37VG7S-4	FRN30VG7S-4	FRN37VG7S-4	MVK8207A
45	FRN45VG7S-2	FRN37VG7S-2	FRN45VG7S-2	MVK8208A	FRN45VG7S-4	FRN37VG7S-4	FRN45VG7S-4	MVK8208A
55	FRN55VG7S-2	FRN45VG7S-2	FRN55VG7S-2	MVK9224A	FRN55VG7S-4	FRN45VG7S-4	FRN55VG7S-4	MVK9224A
75	FRN75VG7S-2	FRN55VG7S-2		MVK9254A	FRN75VG7S-4	FRN55VG7S-4		MVK9254A
90	FRN90VG7S-2	FRN75VG7S-2		MVK9256A	FRN90VG7S-4	FRN75VG7S-4		MVK9256A
10		FRN90VG7S-2			FRN110VG7S-4	FRN90VG7S-4		MVK9284A
32					FRN132VG7S-4	FRN110VG7S-4		MVK9286A
60					FRN160VG7S-4	FRN132VG7S-4		MVK931LA
00					FRN200VG7S-4	FRN160VG7S-4		MVK931MA
20					FRN220VG7S-4	FRN200VG7S-4		MVK931NA
50					FRN250VG7S-4		—	
80					FRN280VG7S-4	FRN220VG7S-4	Capac	ity range add
00						FRN250VG7S-4		
15					FRN315VG7S-4	FRN280VG7S-4		
55					FRN355VG7S-4	FRN315VG7S-4		
00					FRN400VG7S-4	FRN355VG7S-4		
00					FRN500VG7S-4	FRN400VG7S-4	Canacity r	ange expande
30					FRN630VG7S-4	FRN500VG7S-4	Capacity I	unge expand
10					FRN710BVG7S-4	FRN630VG7S-4		
00					FRN800BVG7S-4			

FRN 5.5 VG 7 S - 2 SX

	Code	Series name
	FRN	FRENIC5000 Series
i	Code	Nominal applied motors
	0.75	0.75kW
	1.5	1.5kW
	2.2	2.2kW
	3.7	3.7kW
	5.5	5.5kW
	7.5	7.5kW
	5	S
	800	800kW
	Code	Structure
	None	Unit type
	В	Stack type

Application examples

1 15-step digital speed setting

Digital settings reduce speed fluctuations on starting and stopping at zero-speed operations.

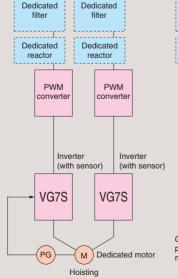
2 Multiple S-curves

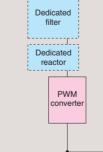
Smooth acceleration and deceleration is achieved.

3 200% or more of maximum torque

Attains 200% of maximum torque using HT specification.

4 Torque bias function


The torque detection signal drastically reduces rollbacks at starting.


5 Load adaptive control

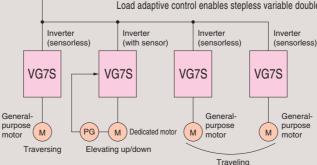
Load adaptive control enables stepless variable double-speed control at light load.

■Crane system configuration

1 Combination of vector control and sensorless vector control

Vector control inverters with sensors are applied to hoisting and elevating devices which require large starting torque and quick response while general-purpose motors and sensorless inverters are applied to traversing and traveling devices.

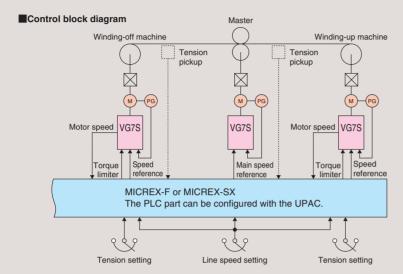
2 PWM converter application


PWM converters drastically reduce harmonic current in power lines. Energy saving is achieved by supplying regenerative energy to power lines on winding-down or decelerating operations and utilizing the regenerative energy of individual inverter section (for example; applying regenerative energy from traverse to drive energy of elevating up/down) while providing a common DC power supply to inverters for traversing, elevating, and traveling devices.

3 Multiple-winding motor drive function

Multiplexing windings of a hoist motor and providing an inverter with each winding can comply with the large capacity system.

4 Load adaptive control


Load adaptive control enables stepless variable double-speed control at light load.

Winding-up and winding-off machines

The following diagram shows simplified tension control for winding-up and winding-off machines (torque reference open loop).

Torque reference is obtained from

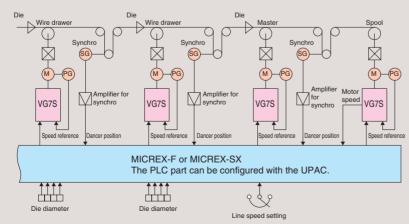
Using winding diameter calculation by PLC since tension reference cannot be input directly into the inverter.

1 Winding diameter calculation

Fuji's PLC calculates winding diameter by reading the line speed and motor speed of the winding-up machine. The winding diameter of winding-off machines is calculated from the line speed and motor speed of the winding-off machine.

2 Torque control

Torque is set, based on the following limitations because applying reference torque values corresponding to tension references directly into inverters may increase motor speed to the overspeed (OS) alarm level if there is breakage.


- Speed reference • • Speed reference higher than the speed of the motor is given to the winding-up device. Speed reference lower than the speed of the motor (or 0 [r/min]) is given to the winding-off device.
- Torque limiter • • Since inverters try to provide maximum torque with the speed references above, the PLC commands torque values corresponding to tension reference as torque limiter values

Closed-loop control is also possible by employing tension pickups and inputting actual tensions into the PLC.

Wire drawing line

■Control block diagram

1 Die diameter calculation

Different types of drawings are conducted on the same wire drawing line and die diameters vary according to wire. Employing Fuji's PLC and entering diameters as digital values after setting reduction ratios in the mechanical system and motor speed enables highprecision speed setting to skip readjusting when dies are changed.

2 Winding diameter calculation

The reference speed is provided such that the peripheral speed of a spool remains constant by reading in the line speed and the motor speed while the diameter of the spool continuously changes.

3 Dancer control

Dancer control prevents lines from breaking due to differences in tensions among drawing machines and keeps the tensions constant. Dancer roll positions are set such that tensions among drawing machines are balanced when dancer rolls are at sensor positions. The PLC detects the movement of dancer rolls from tension imbalances and corrects the speeds to return the dancer rolls to sensor positions. A PID controller for adjusting dancer roll positions is integrated into the PLC.

Standard Specifications

CT use (for constant torque, overload capability: 150% - 1min.)

Three-phase 200V series

	Type FRN⊡VG7S-2△∠	7 0	.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
No	minal applied motor [kW]	0	.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Ra	ted capacity [kVA] (*1)	1	.9	3.0	4.1	6.8	10	14	18	24	28	34	44	55	68	81	107	131
Ra	ted current (Continuous)	5		8	11	18	27	37	49	63	74	90	116	145	180	215	283	346
	(1min.)	7	.5	12	16.5	27	40.5	55.5	73.5	94.5	111	135	174	217.5	270	333	441	519
	Phase, Voltage, Frequency	3	-phas	e 200 to	o 230V,	50Hz/6	0Hz				3-phas	se 200 to	220V/	50Hz, 2	00 to 2	30V/60	Hz (*2)	
(0	Voltage/frequency variation	V	oltage/	e: +10 t	o -15%,	Freque	ency: +5	to -5%	, Voltag	e unbal	ance: 2	% or les	ss (*3)					
ratings	Momentary voltage dip capability When voltage drops from the rated voltage, the inverter will continue operation if the voltage is more than 165V.																	
t rat	(*4)	If	f the v	oltage i	s less th	nan 165	V, the ii	nverter	can be	operate	d for 15	ms.						
nbut	Rated current [A] (with DCR)	3	3.1	5.7	8.3	14.0	19.7	26.9	39.0	54.0	66.2	78.8	109	135	163	199	272	327
_	(*7) (without DC	R) 6	6.4	11.1	16.1	25.5	40.8	52.6	76.9	98.5	117	136	168	204	243	291	_	_
	Required power supply capacity [kV.	A] (*5) 1	.1	2.0	2.9	4.9	6.9	9.4	14	19	23	28	38	47	57	69	95	114
Bra	aking method /braking torque	В	Braking	g resisto	or disch	arge co	ntrol: 15	50% bra	king tor	que, Se	paratel	y install	ed brak	ing resi	stor (op	tion), S	eparate	ly
		ir	nstalle	d brakiı	ng unit	option 1	or 75kV	V or mo	re)									
Ca	rrier frequency [kHz] (*6)	0	.75 to	15													0.75 to	10
Ma	iss [kg]	8		8	8	8	8	8	12.5	12.5	25	25	30	37	46	48	70	115
En	closure	U	Jp to 1	5kW: II	P20, 18	.5kW or	over: II	P00 (IP	20: opti	on)								

- *1) Inverter output capacity [kVA] at 220V.
- *2) Order individually for 220 to 230V/50Hz.
- *3) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] Min. voltage [V])/Three-phase average voltage [V] × 67
- *4) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.
- *5) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)
- *6) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.
- *7) This value is obtained by using a FUJI original calculation method.
- *8) Use the function code F80 to switch between CT, VT and HT uses
- *9) Not EN standard conformed.

Three-phase 400V series

	Type FRN⊡VG7S-4△△	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	250	280	315	355	400	500	630	710B	800B
No	minal applied motor [kW]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	250	280	315	355	400	500	630	710	800
Ra	ted capacity [kVA] (*1)	6.8	10	14	18	24	29	34	45	57	69	85	114	134	160	192	231	287	316	356	396	445	495	563	731	891	1044	1127
Ra	ted current (Continuous)	9.0	13.5	18.5	24.5	32.0	39.0	45.0	60.0	75.0	91.0	112	150	176	210	253	304	377	415	468	520	585	650	740	960	1170	1370	1480
	(1min.)	13.5	20.0	27.5	36.5	48.0	58.5	67.5	90.0	113	137	168	225	264	315	380	456	566	623	702	780	878	975	1110	1440	1755	2055	2220
	Phase, Voltage, Frequency (*1)	3-phas	se 380	to 480\	V, 50Hz	/60Hz	3-ph	ase 3	380 to	440	V/50	Hz, 3	80 to	480	V/60H	Iz (*8	()										DC513	to 758V
	Voltage/frequency variation	Volta	age:	+10	to -1	5%,	Free	quer	ıcy: -	+5 to	-5%	, Vo	tage	unb	alan	ce: 2	2% o	r les	s (*2)							_	
ratings	Momentary voltage dip	Whe	en vo	oltage	e dro	ps fr	om t	he ra	ated	volta	ge, t	he in	verte	er wi	II cor	ntinue	e ope	eratio	n if t	he v	oltaç	je is	more	e tha	n 31	0V.	_	
	capability (*3)	If the	e vol	ltage	is le	ss th	nan 3	310V	, the	inve	erter	can	be o	pera	ted f	or 15	īms.											
Input	Rated current [A] (with DCR)	7.1	10	13.5	19.8	26.8	33.2	39.3	54	67	81	100	134	160	196	232	282	352	385	438	491	552	624	704	880	1104	_	_
=	(*6) (without DCR)	14.9	21.5	27.9	39.1	50.3	59.9	69.3	86	104	124	150	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_
	Required power supply capacity [kVA] (*4)	5.0	7.0	9.4	14	19	24	28	38	47	57	70	93	111	136	161	196	244	267	304	341	383	432	488	610	765	_	_
Dro	king method/braking torque	Brak	king	resis	tor d	isch	arge	con	trol:	150%	% bra	aking	torc	μe,	Sepa	arate	ly ins	stalle	d br	akin	g res	istor	(opt	ion),	Sep	arat	ely	
ыс	iking method/braking torque	insta	alled	brak	king ı	unit ((optio	n fo	r 13	2kW	or m	nore)																
Ca	Carrier frequency [kHz] (*5)		to 1	5									0.75	to 1	10										0.75	to 5	2.5 to	5 5
Ма	ss [kg]	8	8	8	12.5	12.5	25	25	30	35	40	41	50	72	72	100	100	140	140	150	250	250	360	360	525	525	225×	(3
En	closure	Up t	o 15	kW:	IP20), 18	.5kW	ord	over:	IP00	O (IF	20:	optic	n)														

- *1) Inverter output capacity [kVA] at 440V.
- *2) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] Min. voltage [V])/Three-phase average voltage [V] × 67
- *3) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.
- *4) When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)
- *5) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.
- *6) This value is obtained by using a FUJI original calculation method.
- *7) Use the function code F80 to switch between CT, VT and HT uses.
- *8) When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside the inverter must be switched.

 When the input voltage is 380Hz, the power output may be occasionally reduced. For the detail, refer to the user's manual of "FRENIC 5000 VG7S". (described in 11.5 Characteristic combination list)
- *9) The inverter for 18.5kW and 250kW motor does not conform to EN standards. If a standard-compliant model is required, select the inverter for 22kW and 280kW.

VT use (for variable torque, overload capability: 110% - 1min.)

Three-phase 200V series

	Type FRN⊡VG7S-2△△	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
No	minal applied motor [kW]	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Ra	ted capacity [kVA] (*1)	3.0	4.1	6.8	10	14	18	24	28	34	44	55	68	81	107	131	158
Ra	ted current (Continuous)	8	11	18	27	37	49	63	74	90	116	145	180	215	283	346	415
	(1min.)	8.8	12.1	19.8	29.7	40.7	53.9	69.3	81.4	99	128	160	198	237	311	381	457
	Phase, Voltage, Frequency	3-phas	e 200 to	230V,	50Hz/6	0Hz				3-phas	e 200 to	o 220V/	50Hz, 2	00 to 2	30V/60H	Hz(*2)	
S	Voltage/frequency variation	Voltage	e: +10 to	o -15%,	Freque	ncy: +5	to -5%	, Voltag	e unbal	ance: 2	% or les	ss (*3)					
ratings	Momentary voltage dip	When	oltage	drops fi	om the	rated v	oltage, t	the inve	rter will	continu	e opera	ation if t	he volta	ge is m	ore thar	165V.	
	capability (*4)	If the v	oltage is	s less th	nan 165	V, the ir	nverter	can be	operate	d for 15	ms.						
nput	Rated current [A] (with DCR)	5.7	8.3	14.0	19.7	26.9	39.0	54.0	66.2	78.8	109	135	163	199	272	327	400
	(*7) (without DCR)	11.1	16.1	25.5	40.8	52.6	76.9	98.5	117	136	168	204	243	291	_	_	_
	Required power supply capacity [kVA] (*5)	2.0	2.9	4.9	6.9	9.4	14	19	23	28	38	47	57	69	95	114	139
Bra	aking method/braking torque				·			•	que, Se	paratel	y install	ed brak	ing resi	stor (op	tion), Se	eparate	ly
_				ng unit (option t	or /5kv	v or mo	re)								I	_
	Carrier frequency [kHz] (*6)		10										1		1	0.75 to	6
Ma	iss [kg]	8	8	8	8	8	8	12.5	12.5	25	25	30	37	46	48	70	115
En	closure	Up to 1	5kW: IF	20, 18	5kW or	over: If	P00 (IP	20: opti	on)								

^{*1)} Inverter output capacity [kVA] at 220V.

Three-phase 400V series

	noo phaoo hoor o																									
	Type FRN⊡VG7S-4△△	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	250	280	315	355	400	500	630
Nor	minal applied motor [kW]	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	300	315	355	400	500	630	710
Rat	ed capacity [kVA] (*1)	10	14	18	24	29	34	45	57	69	85	114	134	160	192	231	287	316	396	425	445	495	563	731	891	1044
Rat	ed current (Continuous)	13.5	18.5	24.5	32.0	39.0	45.0	60.0	75.0	91.0	112	150	176	210	253	304	377	415	520	558	585	650	740	960	1170	1370
	(1min.)	14.9	20.4	27	35.2	42.9	49.5	66	82.5	100	123	165	194	231	278	334	415	457	583	614	655	737	847	1056	1287	1507
	Phase, Voltage, Frequency (*1)	3-phas	se 380	to 480	V, 50Hz	/60Hz	3-ph	ase 3	380 to	440	V/50	Hz, 3	80 to	480\	//60H	lz (*8	3)									
S	Voltage/frequency variation	Volta	age:	+101	to -15	5%, F	requ	ency	/: + 5	to -5°	%, V	oltag	e unt	oalan	ce: 2	% or	less	(*2)								
rating	Momentary voltage dip	Whe	n vo	Itage	drop	s fro	m th	e rate	ed vo	Itage	, the	inve	rter v	vill co	ntinu	іе ор	eratio	on if	the v	oltag	e is ı	nore	than	310	٧.	
t rai	capability (*3)	If the	e volt	age	is les	s tha	ın 31	0V, t	he in	verte	r car	be o	opera	ated f	or 15	ms.										
nbnt	Rated current [A] (with DCR)	10	13.5	19.8	26.8	33.2	39.3	54	67	81	100	134	160	196	232	282	352	385	491	526	552	624	704	880	1104	1248
	(*6) (without DCR)	21.5	27.9	39.1	50.3	59.9	69.3	86	104	124	150	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Required power supply capacity [kVA] (*4)	7.0	9.4	14	19	24	28	38	47	57	70	93	111	136	161	196	244	267	341	365	383	432	488	610	765	865
Bro	king method/braking torque	Brak	ing r	esist	or dis	cha	rge c	ontro	l: 15	0% b	rakin	g tor	que,	Sepa	ıratel	y ins	talled	bra	king ı	resis	tor (c	ption	1), Se	para	tely	
ыа	king method/braking torque	insta	lled	braki	ng ur	nit (o	ption	for 1	32k	V or	more	e)														
Car	Carrier frequency [kHz] (*5)		to 10)									0.75	to 6											0.75 to 5	0.75 to 2
Mas	ss [kg]	8	8	8	12.5	12.5	25	25	30	35	40	41	50	72	72	100	100	140	140	150	250	250	360	360	525	525
End	nclosure Up to 15kW: IP20, 18.5kW or over: IP00 (IP20: option)																									

^{*1)} Inverter output capacity [kVA] at 440V.

^{*2)} Order individually for 220 to 230V/50Hz.

^{*3)} Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] \times 67 *4) Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.

^{*5)} When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)

^{*6)} The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.

^{*7)} This value is obtained by using a FUJI original calculation method.

^{*8)} Use the function code F80 to switch between CT, VT and HT uses.

^{*9)} Not EN standard conformed.

^{*2)} Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models). Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] \times 67

^{*3)} Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.

^{*4)} When power-factor correcting DC REACTOR is used. (Optional for 55kW or less model)

^{*5)} The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.

^{*6)} This value is obtained by using a FUJI original calculation method.

^{*7)} Use the function code F80 to switch between CT, VT and HT uses.

^{*8)} When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside the inverter must be switched.

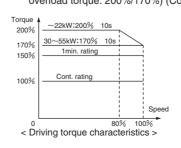
^{*9)} The inverter for 22kW and 300kW motor does not conform to EN standards. If a standard-compliant model is required, select the inverter for 30kW and 315kW.

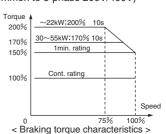
Standard Specifications

HT use (for vertical transfer application, overload torque: 200%/170% - 10s)

Three-phase 200V series

	Type FRN⊡VG7S-2△△	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
No	minal applied motor [kW]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Rat	ted capacity [kVA] (*1)	6.8	10	14	18	24	28	34	44	55	68	81
Rat	ted current (*2)	18	27	37	49	63	74	90	116	145	180	215
	(1min.)	27	40.5	55.5	73.5	94.5	111	135	174	217.5	270	333
	(10s)	32.4	45.7	63.3	85.8	111	142	170	194	246	290	360
	Phase, Voltage, Frequency	3-phase 2	00 to 230V	, 50Hz/60H	lz		3-phase 2	00 to 220V	/50Hz, 200	to 230V/6	OHz (*3)	
gs	Voltage/frequency variation	Voltage: +	10 to -15%	, Frequenc	y: +5 to -5°	%, Voltage	unbalance	: 2% or less	s (*4)			
ratings	Momentary voltage dip capability (*5)	When voltage of	lrops from the rat	ed voltage, the ir	verter will contin	ue operation if th	ne voltage is mor	e than 165V. If th	e voltage is less	than 165V, the in	verter can be op	perated for 15ms.
Input 1	Rated current [A] (with DCR)	14.0	19.7	26.9	39.0	54.0	66.2	78.8	109	135	163	199
i i	(*8) (without DCR)	25.5	40.8	52.6	76.9	98.5	117	136	168	204	243	291
	Required power supply capacity [kVA] (*6)	4.9	6.9	9.4	14	19	23	28	38	47	57	69
Ca	rrier frequency [kHz] (*7)	0.75 to 15										
Ма	ss [kg]	8	8	8	12.5	12.5	25	25	30	37	46	48
End	closure	Up to 15k	W: IP20, 18	3.5kW or ov	er: IP00 (II	P20: option	1)					
<u>e</u>	Continuous [%] (*9)	100%										
Torque	1min. rating [%] (*9)	150%										
ĭ	10s rating [%] (*9)	200% (at	80% or less	of rated sp	peed)/170%	% (at rated	speed)		170%			
Bra	king method/braking torque	Braking re	sistor disch	narge contr	ol: 150% b	raking torq	ue, Separa	tely installe	d braking r	esistor (op	tion)	


^{*1)} Inverter output capacity [kVA] at 220V


Three-phase 400V series

	Type FRN⊡VG7S-4△∠	7	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Nor	minal applied motor [kW]		3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Rat	ed capacity [kVA] (*1)		6.8	10	14	18	24	29	34	44	57	69	85
Rat	ed current (*2)		9.0	13.5	18.5	24.5	32.0	39.0	45.0	58.0	75.0	91.0	112
	(1min.)		13.5	20.0	27.5	36.5	48.0	58.5	67.5	90.0	113	137	168
	(10s)		16	22.7	31.6	42.9	59.1	73.5	85.1	96.0	120	150	182
	Phase, Voltage, Frequency		3-phase 3	80 to 480V	, 50Hz/60H	lz		3-phase 3	80 to 440V	/50Hz, 380	to 480V/6	OHz (*9)	
gs	Voltage/frequency variation		Voltage: +	10 to -15%	, Frequenc	y: +5 to -5°	%, Voltage	unbalance	: 2% or les	s (*3)			
ratings	Momentary voltage dip capabili	ty (*4)	When voltage d	rops from the rat	ed voltage, the ir	nverter will contin	ue operation if th	ne voltage is mor	e than 310V. If th	e voltage is less	than 310V, the in	nverter can be op	erated for 15ms.
	Rated current [A] (with DCR)		7.1	10	13.5	19.8	26.8	33.2	39.3	54	67	81	100
Input	(*7) (without DCI	R)	14.9	21.5	27.9	39.1	50.3	59.9	69.3	86	104	124	150
	Required power supply capacity [k\	'A] (*5)	5.0	7.0	9.4	14	19	24	28	38	47	57	70
Car	rier frequency [kHz] (*6)		0.75 to 15										
Ma	ss [kg]		8	8	8	12.5	12.5	25	25	30	35	40	41
End	closure		Up to 15k\	W: IP20, 18	3.5kW or ov	er: IP00 (II	P20: option	1)					
ne	Continuous [%] (*8)		100%										
orqu	1min. rating [%] (*8)		150%										
	10s rating [%] (*8)		200% (at 8	30% or less	of rated s	peed)/170%	% (at rated	speed)		170%			
Bra	king method/braking torque		Braking re	sistor disch	narge contr	ol: 150% b	raking torq	ue, Separa	tely installe	ed braking r	esistor (op	tion)	

¹⁾ Inverter output capacity [kVA] at 440V.

Torque characteristics of HT use (for vertical transfer application, overload torque: 200%/170%) (Common to 3-phase 200V/400V)

^{*2)} Select the inverter capacity such that the square average current in cycle operation is 80% or less of the rated current of an inverter

^{*3)} Order individually for 220 to 230V/50Hz

^{*4)} Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for FUJI's conventional models).

Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67

^{*5)} Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.

^{*6)} When power-factor correcting DC REACTOR (option) is used

^{*7)} The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.

^{*8)} This value is obtained by using a FUJI original calculation method.

^{*9)} These torque characteristics are obtained when combined with a dedicated motor.

^{*10)} Use the function code F80 to switch between CT, VT and HT uses.

^{*11)} Not EN standard conformed.

^{*2)} Select the inverter capacity such that the square average current in cycle operation is 80% or less of the rated current of an inverter.

*3) Use a DC REACTOR if the voltage unbalance exceeds 2% (this is the same as for

FUJI's conventional models) Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average

^{*4)} Tested at the standard load condition (85% load of nominal applied motor) prescribed by JEMA.

^{*5)} When power-factor correcting DC REACTOR (option) is used.

^{*6)} The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.

^{*7)} This value is obtained by using a FUJI original calculation method *8) These torque characteristics are obtained when combined with a dedicated motor.

^{*9)} When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, a connector inside the inverter must be switched.

^{*10)} Use the function code F80 to switch between CT, VT and HT uses.

^{*11)} The inverter for 18.5kW motor does not conform to EN standards If a standard-compliant model is required, select the inverter for 22kW.

Commonm Specifications

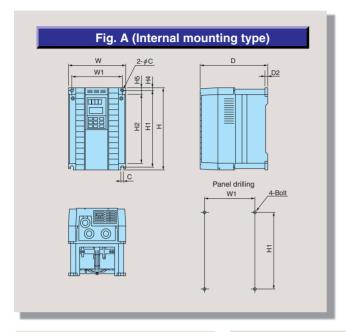
CT use, VT use and HT use

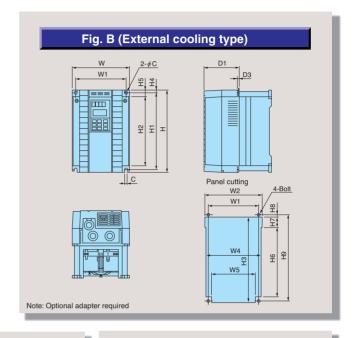
	Item			Explanation
Main circuit typ	oe		Voltage type IGBT sinusoidal PWM inverter	
Motor control n			Vector control	
			Sensorless vector control	
			V/f control	
			Vector control (synchronous motors)	
			Simulated operation mode	
Speed control	Maximum speed		200Hz in terms of inverter output frequency	2P: 12,000 r/min 4P: 6,000 r/min where PG frequency is 100kHz or less 6P: 4,000 r/min
			400Hz for V/f control	
	Control range	Vector control	1:1000 (Min. speed, base speed: 1.5 to 1500 r/n 1:4 (Constant torque range, constant output ran	•
		Sensorless control V/f control	1:100 (Min. speed, base speed: 15 to 1500 r/mir 1:4 (Constant torque range, constant output ran	•
	Control response	Vector control	100Hz (max.)	· ·
		Sensorless control	20Hz (max.)	
	Control accuracy	Vector control	Analog setting: ±0.1% of max. speed (25±10°C)	
			Digital setting: ±0.005% of max. speed (-10 to +	
		Sensorless control	Analog setting:±0.5% of max. speed (25±10°C)	·
			Digital setting: ±0. 5% of max. speed (-10 to +50	°C)
	Setting resolution	n	0.005% of max. speed	
Control	Operation metho	od	KEYPAD operation: FWD or REV key, STOP key	<i>y</i>
			Digital input signal operation: FWD or REV command, C	oast-to-stop command, reset input, multistep speed selection command, etc.
	Speed setting		KEYPAD operation: or key	
			External potentiometer: three terminals, 1 to 5ks	Ω
			Analog input: 0 to ±10V	
			UP/DOWN control: Speed increases when UP s	ignal (DI) is ON, and decreases when DOWN signal (DI) is ON.
			Multistep speed: Up to 15 different speeds can be	be selected by combining four external input signals (DI).
			Digital signal: Setting with an option card's 16-bi	it parallel signal
			Serial link operation: RS-485 (standard). Setting	through different communication options is possible.
			Jogging operation: or key, FWD or R	EV terminals in jogging mode
	Running status s	ignal		e, Speed detection, inverter overload early warning, torque limiting, etc.
	Assolaration/Des	alayatian tima	Analog output: Motor speed, Output voltage, To	
	Acceleration/Dec	eleration time		eration and deceleration selectable with external signals)
	0.1.6		(S-curve acceleration/deceleration in addition to	
	Gain for speed s	etting		og speed setting and motor speed in the range of 0 to 200%.
F	Jump speed	(FI:)	Jump speed (3 points) and jump hysteresis widt	
	Rotating motor pick		7	verter without stopping. (Vector control and sensorless vector control)
F	Auto-restart after mom		Automatic restart is available without stopping the	
	Slip compensation Droop control	ווע	Compensates for the decrease of speed due to	
	Torque limiting		The motor speed droops in proportion to output	
	.orque infatting		braking", etc.)	ctable from "common to 4 quadrants", "independent driving and
				re available (vector control and sensorless vector control).
	PID control		PID control with analog input	C STANDED (10010) CONTROL WING CONTROL TOURS TOURS CONTROL.
	Fan stop operation	nn	Stops the cooling fan at low temperatures to rec	fuce noise
	Torque bias	· · ·		arity change in accord with motor rotating direction),
				rnal signals (DI signals), and analog setting (with holding function).
	Speed limiting			ver limits, and individual limits to FWD/REV rotation. Speed limit
			usable even in torque control mode.	
	Motor selection		Select from three types.	
	Multiple winding	motor drive	Optional	
	UP/DOWN contr		Speed can be set with external signals (DI signals); co	ombination of UP command, DOWN command, and zero clear command.
	Stopping function	n	Three types of stopping functions, STOP 1, 2 ar	nd 3
	PG pulse output		Divides PG signal for output.	
	Observer		Suppresses load disturbances and vibrations.	
	Position control		Optional	

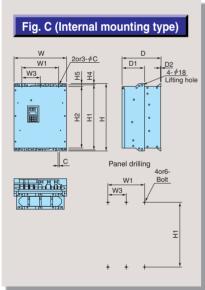
Commonm Specifications

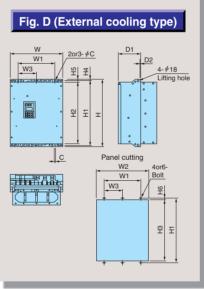
	Item	Explanation
Indication	Running/Stopping	Detected speed value Speed reference value Output frequency Torque current reference value
		*Torque reference value *Torque calculation value *Motor output *Output current *Output voltage
		• DC link circuit voltage • Magnetic-flux reference value • Magnetic-flux calculation value
		Load shaft speed PID reference value PID feedback value PID output value Ai adjusted value (12)
		• Ai adjusted value (Ai1) • Ai adjusted value (Ai2) • Ai adjusted value (Ai3) • Ai adjusted value (Ai4) • Optional monitor 1
		Optional monitor 2 Optional monitor 3 Optional monitor 4 Optional monitor 5 Optional monitor 6
		Presence of digital input/output signal Motor temperature Heat sink temperature Load factor
		Operation time, etc.
	Programming	Displays function codes, names, and data.
		Multi-language display: English, French, Spanish, German, Italian, Chinese, Korean and Japanese.
	Trip mode	Displays the following trip codes;
		• d b H Overheat at the DB circuit • d € F DC fuse blown • E F Ground fault • P 9 PG error
		• E Memory error • E KEYPAD panel communication error • d [] Excessive position deviation • E Y Network error
		• £ - 5 RS-485 error • £ - 6 Operation procedure error • £ - 3 CPU error • £ - 8 A/D converter error
		• E - 9 Speed disagreement • E - P UPAC error • E - 7 Output wiring error • I P E IPM error
		• L In Input phase loss • L ∐ Undervoltage • E r b Inter-inverter communication error • □ □ □ Overcurrent
		• ## / Overheating at heat sink • ## External alarm input • ## NTC thermistor disconnection • ### Motor overheat
		• $0 \downarrow$ / Motor 1 overload • $0 \downarrow$ / Motor 2 overload • $0 \downarrow$ / Inverter internal overheat • $0 \downarrow$ / Inverter unit overload
		• 05 Overspeed • 01 Overvoltage • 01 Motor 3 overload • 15 Charging circuit error
	Running/Trip mode	Stores and displays data for the last ten trips.
		Stores and displays the detailed cause of the last trip.
	Charge lamp	ON when there is residual voltage in the main circuit capacitors.
Protection	Overload	Protects the inverter by electronic thermal overload relay and the detection of inverter temperature.
	Overvoltage	Detects DC link circuit overvoltage and stops the inverter.
	Incoming surge	Protects the inverter from surge voltage between the main circuit power lines and the ground.
	Undervoltage	Detects DC link circuit undervoltage and stops the inverter.
	Overheat	Stops the inverter by detecting the inverter internal temperature.
	Short-circuit	Protects the inverter from overcurrent due to a short-circuit in the output circuit.
	Ground fault	Protects the inverter from overcurrent due to a ground fault in the output circuit.
	Motor protection	Protects the motor with NTC thermistor and PTC thermistor. Protects the motor with electronic thermal overload relay.
		Overload early warning: Overload early warning can be issued at a predetermined level before stopping the inverter.
		(The electronic thermal overload relay and the overload early warning can be set for motor 1 to 3 individually)
	DB resistor overheating	Protects through internal functions of the inverter.
	DB resistor overneating	• For the optional DB resistor, an external alarm signal issued from the built-in temperature sensor stops the inverter.
	Input phase loss	Protects the inverter from damage due to input phase loss.
	Output phase loss	Detects impedance imbalance in the output circuit and issues an alarm (under tuning operation).
	Retry	Sets the retry numbers and retry waiting time for stoppage due to an alarm (only for \$\mathbb{O}_{\text{.0}}, \mathbb{O}_{\text{.0}}, \mathbb{O}_{\tex
Conditions	Installation location	Indoor use only. Free from corrosive and flammable gases, dusts, and direct sunlight.
20110110	Ambient temperature	-10 to +50°C
	Ambient humidity	5 to 95%RH (no condensing)
	Altitude	3000m or less (output reduction may occur if the altitude is in the range between 1001 and 3000m).
	Vibration	Amplitude: 3mm at 2 to 9Hz, 9.8m/s² at 9 to 20Hz. 2m/s² at 20 to 55Hz, 1m/s² at 55 to 200Hz (200V 55kW, 400V 75kW or less)
		2m/s² at 9 to 55Hz, 1m/s² at 55 to 200Hz (200V 75kW, 400V 90kW or above)
	Storage temperature	−25 to +65°C
	Storage humidity	5 to 95%RH
Maintenance	Main circuit capacitor life	Life judgment function installed
	Common functions	Displays and records accumulated time for capacitor life and cooling fan operation time in the control power.
		Displays and records inverter operation time.
		• Displays and records the maximum output current and the maximum internal temperature for the past one year.
Communication	RS-485 communications	Provided as standard

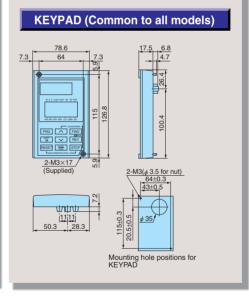
Protective functions

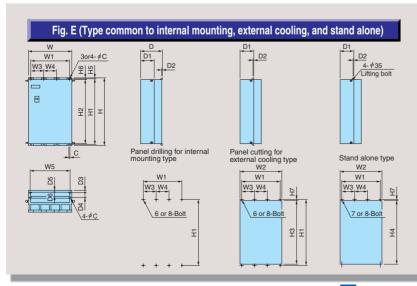

Description	LED monitor	Related function code
When the built-in braking resistor overheats, the inverter stops discharging and running.	дЬН	E35-37
Function codes E35 to 37 corresponding to the resistor (built-in/external) must be set.		
When a fuse at the main DC circuit blows due to a short-circuit in the IGBT circuit, the inverter stops operation.	dE F	
Activated by a ground fault in the inverter output circuit. Connect a separate earth-leakage protective		
	- '	
·	40	018
	00	
·		
	E - !	
·	5-2	F02
	LIL	1 02
	r 7	
	Ers	00.04
	Ery	030,31
Activated if:	trb	H32,H33,H38
The function code H32 is set to 0 to 2, or		
a disconnection continues for more than the specified period of 0.1 to 60.0 with the function code H38.		
Activated if multiple network options (T-Link, SX bus, and field bus) are installed. Though you can	Er B	
install multiple SI, DI and PG options, this error is issued if the two SW settings are identical.		
Activated when the measured data are out of the motor characteristic data range during executing	Ern	H01,H71
tuning or the wires are not connected in the inverter output circuit.		
Activated when an error occurs in the A/D converter circuit.	Er8	
Activated when the deviation between the speed reference (speed setting) and the motor speed	Er 9	
(detected speed, predicted speed) becomes excessive.		
Activated on a hardware fault in the UPAC option or a communications error between the inverter control circuit and the UPAC option.	ErR	
Activated if a communications error occurs in inter-inverter communications over the optical option or simplified RS-485.		
Actuated if IPM self-shutoff function is triggered by excessive current or overheat.		
		F14
· · · · · · · · · · · · · · · · · · ·		
-		
Activated if the thermistor circuit is disconnected when the application of NTC thermistors to		
Activated if the thermstor circuit is disconlinected when the application of 1410 thermstors to	2-6	D30 A31 A47
	nrb	P30,A31,A47
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47.		P30,A31,A47
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault.	<u> </u>	P30,A31,A47
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due		P30,A31,A47
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage.	0C 0H I	
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR).	<u> </u>	P30,A31,A47
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected	0C 0H I	
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor.	0E 0K I 0H2	
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter.	0E 0H I 0H2	
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor.	0E 0K I 0H2	
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter.	0E 0H I 0H2 0H3 0H4	E01-E14
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11".	0E 0H I 0H2 0H3 0H4	E01-E14
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33".	0E 0H I 0H 2 0H 3 0H 4 0L I 0L 2	E01-E14
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33".	0E 0H 2 0H 3 0H 4 0L 1 0L 2 0L 3	E01-E14 E30,E31 F11
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A43". Activated if the output current exceeds the overload characteristic of the inverse time characteristic.	0E 0H 2 0H 3 0H 4 0L 1 0L 2 0L 3 0L 3	E01-E14 E30,E31 F11 A33
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A43". Activated if the output current exceeds the overload characteristic of the inverse time characteristic.	0E 0H 2 0H 3 0H 4 0L 1 0L 2 0L 3	E01-E14 E30,E31 F11 A33
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A43". Activated if the output current exceeds the overload characteristic of the inverse time characteristic.	0E 0H 2 0H 3 0H 4 0L 1 0L 2 0L 3 0L 3	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the	0	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code R11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A43". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed".	0E 0H 2 0H 3 0H 4 0L 1 0L 2 0L 3 0L 3	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed". Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake.	0	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A43". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed". Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake. • Overvoltage detection level	0	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed". Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake. • Overvoltage detection level 200V series: 400V DC, 400V series: 800V DC	0C 0H I 0H2 0H3 0H4 0L I 0L 2 0L 3 0L U 0S	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the momentary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed". Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake. • Overvoltage detection level 200V series: 400V DC, 400V series: 800V DC Activated when the pulse generator terminal PA/PB circuits are disconnected.	0	E30,E31 F11 A33 A49
corresponding motors (M1, 2, 3) is specified with the function codes P30, A31 and A47. Activated if the mementary value of the inverter output current exceeds the overcurrent detection level due to a short-circuit or ground fault. Activated if the temperature of the heat sink to cool the rectifier diodes and the IGBTs increases due to cooling fan stoppage. The inverter stops on receiving the external alarm signal (THR). It is activated by a terminal signal when the control circuit terminals (THR assignment) are connected to alarm terminals of external devices such as a braking unit or a braking resistor. Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter. Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of the "function code E30 Motor overheat protection". Activated when the motor 1 current (inverter output current) exceeds the operation level set by "function code F11". Activated when the motor 2 current (inverter output current) exceeds the operation level set by "function code A33". Activated when the motor 3 current (inverter output current) exceeds the operation level set by "function code A49". Activated if the output current exceeds the overload characteristic of the inverse time characteristic. Activated if the motor speed (detected speed value/predicted speed value) exceeds 120% of the specified value by the function code "maximum speed". Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake. • Overvoltage detection level 200V series: 400V DC, 400V series: 800V DC Activated when the pulse generator terminal PA/PB circuits are disconnected. It is not activated when the sensorless control or the V/f control is selected.	0C 0H I 0H2 0H3 0H4 0L I 0L 2 0L 3 0L U 0S	E30,E31 F11 A33 A49
	Function codes E35 to 37 corresponding to the resistor (built-in/external) must be set. When a fuse at the main DC circuit blows due to a short-circuit in the IGBT circuit, the inverter stops operation. Activated by a ground fault in the inverter output circuit. Connect a separate earth-leakage protective relay or an earth-leakage circuit breaker for accident prevention such as human damage and fire. Activated when the position deviation between the reference and the detected values exceeds the function code o18 "Excessive deviation value" in synchronized operation. The option code "o" becomes valid and is displayed on the KEYPAD after installing options. Activated when a fault such as "write error" occurs in the memory. Activated if a communications error is detected between the inverter control circuit and the KEYPAD when the start/stop command from the KEYPAD is valid (function code F02=0). NOTE: KEYPAD communications error does not indicate the alarm display and issue the alarm relay output when the inverter is operated by external signal input or the link function. The inverter continues operating. Activated when a CPU error occurs due to noise. Activated if a communications error occurs due to noise when the inverter is operated through T- Link, SX bus or field bus. Activated if: The function code H32 is set to 0 to 2, or a disconnection continues for more than the specified period of 0.1 to 60.0 with the function code H38. Activated if multiple network options (T-Link, SX bus, and field bus) are installed. Though you can install multiple SI, DI and PG options, this error is issued if the two SW settings are identical. Activated when the measured data are out of the motor characteristic data range during executing tuning or the wires are not connected in the inverter output circuit. Activated when an error occurs in the A/D converter circuit. Activated when the deviation between the speed reference (speed setting) and the motor speed (detected speed, predicted speed) becomes excessive.	Function codes E35 to 37 corresponding to the resistor (built-in/external) must be set. When a fuse at the main DC circuit blows due to a short-circuit in the IGBT circuit, the inverter stops operation. Activated by a ground fault in the inverter output circuit. Connect a separate earth-leakage protective relay or an earth-leakage circuit breaker for accident prevention such as human damage and fire. Activated when the position deviation between the reference and the detected values exceeds the function code o18 "Excessive deviation value" in synchronized operation. The option code "o" becomes valid and is displayed on the KEYPAD after installing options. Activated when a fault such as "write error" occurs in the memory. Activated if a communications error is detected between the inverter control circuit and the KEYPAD when the start/stop command from the KEYPAD is valid (function code F02=0). NOTE: KEYPAD communications error does not indicate the alarm display and issue the alarm relay output when the inverter is operated by external signal input or the link function. The inverter continues operating. Activated when a CPU error occurs due to noise. Activated if a communications error occurs due to noise when the inverter is operated through T-Link, SX bus or field bus. Activated if: The function code H32 is set to 0 to 2, or a disconnection continues for more than the specified period of 0.1 to 60.0 with the function code H38. Activated if multiple network options (T-Link, SX bus, and field bus) are installed. Though you can install multiple SI, DI and PG options, this error is issued if the two SW settings are identical. Activated when the measured data are out of the motor characteristic data range during executing tuning or the wires are not connected in the inverter output circuit. Activated when an error occurs in the A/D converter circuit. Activated when an error occurs in the A/D converter circuit. Activated when the deviation between the speed reference (speed setting) and the motor sp

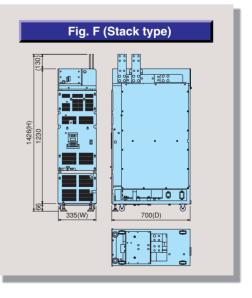

NOTES


- · All protective functions are reset automatically if the control power voltage decreases to where maintaining the operation of the inverter control circuit is impossible.
- · Fault history data is stored for the last ten trips.
- Stoppage due to a protective function can be reset by the RST key of the KEYPAD or turning OFF and then ON between the X terminal (RST assigning) and the CM. This action is invalid if the cause of an alarm is not found and resolved.
- In addition to these protective functions, there can be further protective from surge voltage by connecting surge suppressors to the main circuit power terminals (L1/R, L2/S, L3/T) and the auxiliary control power terminals (R0, T0).


External Dimensions


External Dimensions





●200V series

	Nominal Dimensions [mm] Approx.																								
Nominal												Ε	Dimen	sions	[mm]									Approx.
applied motor [kW]	Inverter type	Fig.	W	W1	W2	W3	W4	W5	Н	H1	H2	НЗ	H4	H5	H6	H7	H8	H9	D	D1	D2	D3	С	Mtg. bolt	mass [kg]
0.75	FRN0.75VG7S-2	Α	205	181	207	_	197	159	300	278	255	314	11	21	253.5	39	8	315	245	125	10	7	10	M8	8
1.5	FRN1.5VG7S-2																								
2.2	FRN2.2VG7S-2	В																							
3.7	FRN3.7VG7S-2																								8
5.5	FRN5.5VG7S-2																								
7.5	FRN7.5VG7S-2																								
11	FRN11VG7S-2		250	226	252		242	202	380	358	335	394			333.5			395							12.5
15	FRN15VG7S-2																								
18.5	FRN18.5VG7S-2	С	340	240	326	_	_	_	480	460	430	442	12	25	9	_	_	_	255	145	4	_	10	M8	25
22	FRN22VG7S-2																								
30	FRN30VG7S-2	D							550	530	500	512													30
37	FRN37VG7S-2		375	275	361				615	595	565	577							270						37
45	FRN45VG7S-2								740	720	690	702													46
55	FRN55VG7S-2																								48
75	FRN75VG7S-2		530	430	510				750	720	685	695	15.5	32.5	12.5				285	145			15	M12	70
90	FRN90VG7S-2		680	580	660	290			880	850	815	825							360	220					115

●400V series

Nominal														Dim	ensi	ons [mm]											Approx.
applied motor [kW]	Inverter type	Fig.	W	W1	W2	W3	W4	W5	Н	H1	H2	НЗ	H4	H5	H6	H7	H8	H9	D	D1	D2	D3	D4	D5	D6	С	Mtg. bolt	mass [kg]
3.7	FRN3.7VG7S-4	Α	205	181	207	_	197	159	300	278	255	314	11	21	253.5	39	8	315	245	125	10	7	_	_	_	10	M8	8
5.5	FRN5.5VG7S-4	•																										
7.5	FRN7.5VG7S-4	В																										
11	FRN11VG7S-4		250	226	252		242	202	380	358	335	394			333.5			395										12.5
15	FRN15VG7S-4																											
18.5	FRN18.5VG7S-4	С	340	240	326	_	-	-	480	460	430	442	12	25	9	-	-	_	255	145	4	_	_	_	_	10	M8	25
22	FRN22VG7S-4																											
30	FRN30VG7S-4	D							550	530	500	512																30
37	FRN37VG7S-4		375	275	361														270									35
45	FRN45VG7S-4								675	655	625	637																40
55	FRN55VG7S-4																											41
75	FRN75VG7S-4								740	720	690	702																50
90	FRN90VG7S-4		530	430	510				740	710	675	685	15.5	32.5	12.5				315	175						15	M12	72
110	FRN110VG7S-4																											
132	FRN132VG7S-4								1000	970	935	945							360	220								100
160	FRN160VG7S-4																											
200	FRN200VG7S-4		680	580	660	290																						140
220	FRN220VG7S-4																											
250	FRN250VG7S-4																											
280	FRN280VG7S-4	E	680	580	660	290	-	610	1400	1370	1330	1340	1335	15.5	35	14.5	-	_	450	285	6.4	50	100	35	115	15	M12	320
315	FRN315VG7S-4																											
355	FRN355VG7S-4		880	780	860	260	260	810																				410
400	FRN400VG7S-4																											
500	FRN500VG7S-4		999	900	980	300	300	900	1550	1520	1480	1490	1485	15.5	35	14.5	-	_	500	313.2	6.4	42	100	_	-	15	M12	525
630	FRN630VG7S-4																											
710	FRN710BVG7S-4	F																										225
800	FRN800BVG7S-4																											

NOTE1: For 75kW or larger inverters, the DC REACTOR for power-factor-correction is provided as standard (separately installed). Reserve the installation space outside of the inverter.

Reserve the installation space outside of the inverter NOTE2: 3stacks required per inverter.

• Mounting adapter for external cooling (optional for models of 15kW or less)

Option type	Applicable inverter type
PBVG7-7.5	FRN0.75VG7S-2~FRN7.5VG7S-2 FRN3.7VG7S-4~FRN7.5VG7S-4
PBVG7-15	FRN11VG7S-2, FRN15VG7S-2 FRN11VG7S-4, FRN15VG7S-4

Dedicated motor Specifications

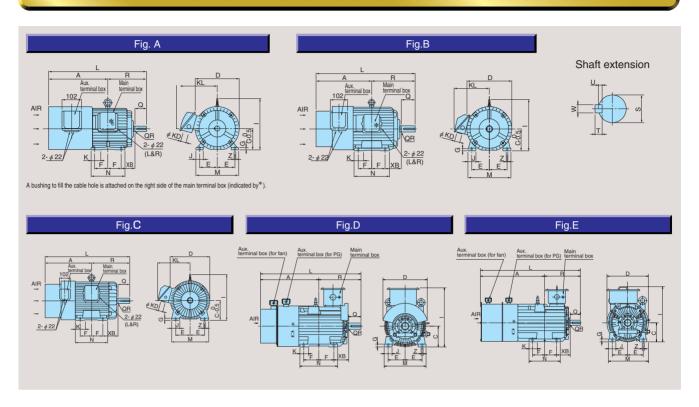
Three-phase 200V series standard specifications

Item		Specifica	ations														
Dedicated motor rate	ed output [kW]	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Applicable motor typ	e (MVK_)	8095A	8097A	8107A	8115A	8133A	8135A	8165A	8167A	8184A	8185A	8187A	8207A	8208A	9224A	9254A	9256A
Moment of inertia of	rotor [kg•m²]	0.009	0.009	0.009	0.016	0.030	0.037	0.085	0.11	0.21	0.23	0.34	0.41	0.47	0.53	0.88	1.03
Base speed/Max. sp	eed [r/min]	1500/360	00									1500/30	00		1500/24	.00	
Vibration		V10 or le	ess												V15 or le	ess	
Cooling fan	Voltage [V]	200 to 2	10V/50Hz	, 200 to 2	30V/60H	z									200V/50I	Hz, 200, 2	20V/60Hz
	Number of phases/poles	1-phase/	4P					3-phase/	4P								
	Input power [W]	40/50						90/120		150/210					80/120	270/390	
	Current [A]	0.29/0.27	7 to 0.31					0.49/0.44	1 to 0.48	0.75/0.7	7 to 0.8				0.76/0.8, 0.8	1.9/2.0,	2.0
Approx. mass [kg]	pprox. mass [kg]		29	32	46	63	73	111	133	190	197	235	280	296	380	510	570

Three-phase 400V series standard specifications

Item		Specific	cations																
Dedicated motor rate	ed output [kW]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220
Applicable motor typ	oe (MVK_)	8115A	8133A	8135A	8165A	8167A	8184A	8185A	8187A	8207A	8208A	9224A	9254A	9256A	9284A	9286A	931LA	931MA	931NA
Moment of inertia of	rotor [kg•m²]	0.016	0.030	0.037	0.085	0.11	0.21	0.23	0.34	0.41	0.47	0.53	0.88	1.03	1.54	1.77	2.97	3.29	3.66
Base speed/Max. sp	peed [r/min]	1500/36	600						1500/30	000		1500/24	100	1500/20	000				
Vibration												V15 or	less						
Cooling fan	Cooling fan Voltage [V] 200 to 21					120V/50H	Hz, 400 t	o 440V/6	60Hz			400V/5	0Hz, 400	, 440V/6	0Hz	380, 40	0, 415V	50Hz	
		200 to 2	230V/60	Ηz												400, 44	0V/60Hz	2	
	Number of phases/ poles	1-phase	e/4P		3-phase	e/4P													
	Input capacity [W]	40/50			90/120		150/210)				80/120	270/390)		450/650)		
	Current [A]	0.29/0.2	27 to 0.3	1	0.27/0.2	4 to 0.25	0.38/0.3	39 to 0.4				0.39/	1.0/1.0,	1.0		1.8, 1.8	, 1.8/2.4	, 2.2	
												0.4, 0.4							
Approx. mass [kg]	oprox. mass [kg]			73	111	133	190	197	235	280	296	380	510	570	710	760	1230	1310	1420

Common specifications


Item	Specifications
Insulation class/Number of poles	Class F/4P
Terminal design	Main terminal box (lug type): 3 or 6 main circuit terminals, NTC thermistor terminals = 2 (MVK8 series), 3 (MVK9 series, 1 is reserved)
	Auxiliary terminal box (terminal block): Pulse generator (PGP, PGM, PA, PB, SS), cooling fan (FU, FV or FU, FV, FW)
Mounting method	Foot mounted with bracket (IMB3), NOTE: Contact FUJI for other methods.
Degree of protection, Cooling method	JP44, Totally enclosed forced-ventilation system with cooling fan motor. A cooling fan blows air over the motor toward the drive-end. (* Only MVK8095A (0.75kW) is of natural air cooling type.)
Installation location	Indoor, 1000m or less in altitude.
Ambient temperature, humidity	-10 to +40°C, 90%RH or less (no condensation)
Finishing color	Munsell N5
Standard conformity	MVK8 series: JEC-2137-2000, MVK9 series: JEM1466 or JEC-37
Standard accessories	Pulse generator (1024P/R, +15V, complementary output), NTC thermistors (1 or 2), cooling fan (except for MVK8095A).

NOTE: Contact a FUJI representative for dedicated motors other than those with 4-pole and a base speed of 1500 [r/min].

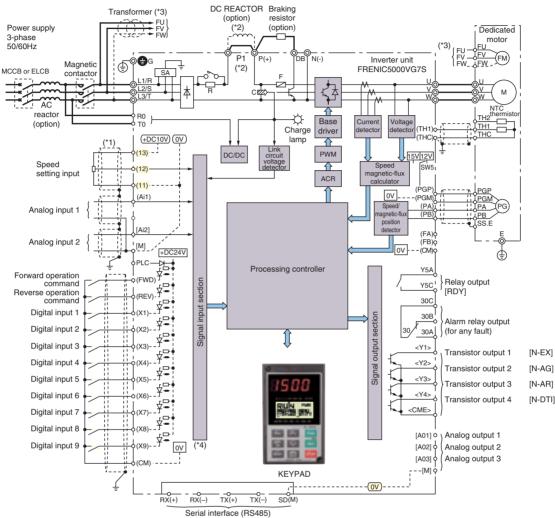
External dimensions of dedicated motors

External dimensions of dedicated motors

■Common dimensions to 200V and 400V series

Motor rated output	Motor type	Fig.	Dime	ension	s [mm]															Shaft	exten	sion [m	ım]			Approx. mass
[kW]			Α	С	D	ĮΕ	F	G	1	J	K	KD	KL	L	М	N	R	ХВ	Z	Q	QR	s	Т	U	W	[kg]
0.75	MVK8095A	Α	201.5	90	204	70	62.5	10	195	35.5	35.5	27	180	370	170	150	168.5	56	10	50	0.5	24j6	7	4	8	28
1.5	MVK8097A		277.5		203	1								446	1											29
2.2	MVK8107A		292	100		80	70	12.5	238	40	40		190	485	195	170	193	63	12	60		28j6				32
3.7	MVK8115A		299	112	236	95		14	270		50	1	205	499	224	175	200	70								46
5.5	MVK8133A	В	309	132	273	108		17	311	45		34	223	548	250	180	239	89		80		38k6	8	5	10	63
7.5	MVK8135A		328				89							586		212	258									73
11	MVK8165A	Α	400	160	321	127	105	18	376	50	63	48	272	723	300	250	323	108	14.5	110	1	42k6			12	111
15	MVK8167A		422				127							767		300	345									133
18.5	MVK8184A		435	180	376	139.5	120.5	20	428	75	75		305	786.5	350	292	351.5	121			1.5	48k6	9	5.5	14	190
22	MVK8185A																									197
30	MVK8187A		454				139.5					60		824.5		330	370.5					55m6	10	6	16	235
37	MVK8207A	С	490	200	411	159	152.5	25	466	80	85	80	364	915.5	390	360	425.5	133	18.5	140	2	60m6	11	7	18	280
45	MVK8208A																									296
55	MVK9224A	С	723	225	445	178	143	25	515	80	95	_	391	1155	436	366	432	149	18.5	140	2	65m6	11	7	18	380
75	MVK9254A	D	693.5	250	535	203	155.5	30	743	100	120		-	1157	506	411	463.5	168	24			75m6	12	7.5	20	510
90	MVK9256A		711.5				174.5							1194		449	482.5									570
110	MVK9284A		764	280	600	228.5	184	35	798					1308	557	468	544	190		170		85m6	14	9	22	710
132	MVK9286A		789.5				209.5							1359		519	569.5									760
160	MVK931LA	E	1060	315	688	254	203	42	918	120	145			1649	628	526	589	216	28			95m6			25	1230
200	MVK931MA		1084.5				228.5							1699		577	614.5									1310
220	MVK931NA		1184.5											1799												1420

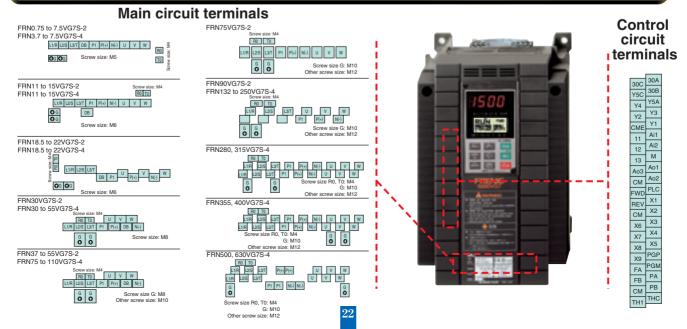
(Note 1) MVK8095A (0.75kW) is of natural cooling type (cooling system: IC410).


Terminal Functions

	Symbol	Terminal name	Function
Main circuit	L1/R, L2/S, L3/T	Power input	Connects a 3-phase power supply.
	U, V, W	Inverter output	Connects a 3-phase motor.
	P (+), P1	For DC REACTOR	Connects a DC REACTOR. A DC REACTOR is optional for 55kW or less and standard for 75kW or more.
	P(+), N(-)	For BRAKING UNIT	Connects a braking resistor via the braking unit. Used for a DC bus connection system.
	P(+), DB	For EXTERNAL BRAKING RESISTOR	Connects an external braking resistor (optional).
	G	Grounding	Ground terminal for inverter chassis (housing).
	R0, T0	Auxiliary control power supply	Connects the same AC power supply as that of the main circuit to back up the control circuit power supply.
Speed setting	13	Potentiometer power supply	Used for power supply for a speed setting POT (variable resistor: 1 to 5kΩ). 10V DC 10mA Max.
	12	Voltage input for speed setting	Used for analog reference voltage input. • 0 to +10V DC /0 to max. speed • Reversible operation can be selected by ±signals: 0 to +10V DC /0 to max. speed. (Input resistance: 10kΩ)
	11	Analog input common	Common terminal to input signals.
Analog input	Ai1	Analog input 1	The following functions can be selected and set according to the external analog input voltage (0 to ±10V DC). (Input resistance: 10kΩ) 0: Input signal off [OFF] 1: Auxiliary speed setting 1 [AUX-N1] 2: Auxiliary speed setting 2 [AUX-N2]
	Ai2	Analog input 2	3: Torque limiter (level 1) [TL-REF1] 4: Torque limiter (level 2) [TL-REF2] 5: Torque bias reference [TB-REF] 6: Torque reference [T-REF] 7: Torque current reference [IT-REF] 8: Creep speed 1 in UP/DOWN setting [CRP-N1] 9: Creep speed 2 in UP/DOWN setting [CRP-N2] 10: Magnetic-flux reference [MF-REF] 11: Detected speed [LINE-N] 12: Motor temperature [M-TMP] 13: Speed override [N-OR] 14: Universal Ai [U-Al] 15: PID feedback value [PID-FB] 16: PID reference value [PID-REF] 17: PID correction value [PID-G] 18: Option Ai [O-Al]
	М	Analog input common	Common terminal to input signals.
Digital input	FWD	Forward operation command	FWD - CM: ON The motor runs in the forward direction. FWD - CM: OFFThe motor decelerates and stops.
	REV	Reverse operation command	REV - CM: ON The motor runs in the reverse direction. REV - CM: OFFThe motor decelerates and stops.
	X1	Digital input 1	The following functions can be assigned to the terminals X1 to X9. 0, 1, 2, 3: Multistep speed selection (step 1 to 15) [0: SS1, 1: SS2, 2: SS4, 3: SS8]
	X2	Digital input 2	4, 5: ASR, ACC/DEC time selection (4 steps) [4: RT1, 5: RT2] 6: 3-wire operation stop command [HLD] 7: Coast-to-stop command [BX] 8: Alarm reset [RST] 9: Trip command (External fault) [THR]
	хз	Digital input 3	10: Jogging operation [JOG] 11: Speed setting N2/Speed setting N1 [N2/N1] 12: Motor M2 selection [M-CH2] 13: Motor M3 selection [M-CH3] 14: DC brake command [DCBRK]
	X4	Digital input 4	15: ACC/DEC cleared to zero [CLR] 16: Creep speed switching in UP/DOWN setting [CRP-N2/N1] 17: UP command in UP/DOWN setting [UP] 18: DOWN command in UP/DOWN setting [DOWN]
	X5	Digital input 5	19: Write enable for KYEPAD (data can be changed) [WE-KP] 20: PID control cancel [KP/PID] 21: Inverse mode change over [IVS] 22: Interlock signal for 52-2 [IL] 23: Write enable through link [WE-LK]
	X6	Digital input 6	24: Operation selection through link [LE] 25: Universal DI [U-DI] 26: Pick up start mode [STM] 27: Synchronization command [SYC] 28: Zero speed locking command [LOCK] 29: Pre-exciting command [EXITE] 30: Speed reference cancel [N-LIM] 31: H41 (torque reference) cancel [H41-CCL]
	X7	Digital input 7	32: H42 (torque current reference) cancel [H42-CCL] 33: H43 (magnetic-flux reference) cancel [H43-CCL] 34: F40 (torque limiter mode 1) cancel [F40-CCL] 35: Torque limiter (level1, lecel2 selection) [TL2/TL1]
	Х8	Digital input 8	36: Bypass [BPS] 37, 38: Torque bias reference 1/2 [37:TB1, 38:TB2] 39: Droop selection [DROOP] 40: Ai1 zero hold [ZH-Al1] 41: Ai2 zero hold [ZH-Al2]
	Х9	Digital input 9	42: Ai3 zero hold [ZH-Al3] 43: Ai4 zero hold [ZH-Al4] 44: Ai1 polarity change [REV-Al1] 45: Ai2 polarity change [REV-Al2] 46: Ai3 polarity change [REV-Al3] 47: Ai4 polarity change [REV-Al4] 48: PID output inverse changeover [PID-INV] 49: PG alarm cancel [PG-CCL] 50: Undervoltage cancel [LU-CCL] 51: Ai torque bias hold [H-TB] 52: STOP1 (The motor stops with standard deceleration time) [SOPT1] 53: STOP2 (The motor decelerates and stops with deceleration time 4) [STOP2] 54: STOP3 (The motor stops with torque limiter) [STOP3] 55: DIA card enable [DIA] 56: DIB card enable [DIB] 57: Multi-winding motor control cancel [MT-ccl] 58, 59, 60, 61, 62, 63: Option Di 1/2/3/4/5/6 [O-DI1 to 6]
	PLC	PLC signal power supply	Connects to the PLC output signal power supply. (Rated voltage 24V (22 to 27V) DC)
	СМ	Digital input common	Common terminal to digital input signals.

	Symbol	Terminal name	Function
Analog output	AO1	Analog output 1	 Provides the monitor signal of 0 to ±10V DC for signals from the following: Detected speed (Speedometer, one-way deflection) [N-FB1+]
	AO2	Analog output 2	1: Detected Speed (Speedometer, two-way deflection)[F-FB1±]
	AO3	Analog output 3	2: Speed setting 1 (Before acceleration/deceleration calculation) [N-REF1] 3: Speed setting 2 (ASR input) [N-REF2] 4: Detected speed [N-FB2±] 5: Detected line speed [LINE-N±]
			6: Torque current reference (Torque ammeter, two-way deflection) [IT-REF±]
			7: Torque current reference (Torque ammeter, one-way deflection) [IT-REF+]
			8: Torque reference (Torque meter, two-way deflection) [T-REF±] 9: Torque reference (Torque meter, one-way deflection) [T-REF+]
			10: Motor current rms value [V-AC] 11: Motor voltage rms value [V-AC] 12: Input power [PWR]
			13: DC link circuit voltage [V-DC] 14: +10V output test [P10] 15: -10V output test [N10]
	М	Analog output	Common terminal to analog output signals.
		common	
Transistor output	Y1	Transistor output 1	 Outputs the selected signals from the following items: 0: Inverter running [RUN] 1: Speed existence [N-EX] 2: Speed agreement [N-AG] 3: Speed equivalence [N-AR]
	Y2	Ti-t	4, 5, 6: Detected speed 1, 2, 3 [4: N-DT1, 5: N-DT2, 6: N-DT3] 7: Stopping on undervoltage [LU]
	12	Transistor output 2	8: Detected torque polarity (braking/driving) [B/D] 9: Torque limiting [TL]
	Y3	Transistor output 3	10, 11: Detected torque [10: T-DT1, 11: T-DT2] 12: KEYPAD operation mode [KP] 13: Inverter stopping [STOP] 14: Operation ready output [RDY] 15: Magnetic-flux detection signal [MF-DT]
	Y4	Transistor output 4	16: Motor M2 selection status [16: SW-M2] 17: Motor M3 selection status [16: SW-M3]
			18: Brake release signal [BRK] 19: Alarm indication1 [AL1]
			20: Alarm indication 2 [AL2] 21: Alarm indication 3 [AL4] 22: Alarm indication 4 [AL8] 23: Fan operation signal [FAN] 24: Auto-resetting [TRY]
			25: Universal DO [U-DO] 26: Heat sink overheat early warning [INV-OH]
			27: Synchronization completion signal [SY-C]
			28: Lifetime alarm [LIFE] 29: Under accelerating [U-ACC] 30: Under decelerating [U-DEC] 31: Inverter overload early warning [INV-OL] 32: Motor temperature early warning [M-OH]
			33: Motor overload early warning [M-OL] 34: DB overload early warning [DB-OL]
			35: Link transmission error [LK-ERR]
			36: Load adaptive control under limiting [ANL] 37: Load adaptive control under calculation [ANC] 38: Analog torque bias hold [TBH]
			39, 40, 41, 42, 43, 44, 45, 46, 47: Optional Do 1/2/3/4/5/6/7/8/9 [O-DO1 to 9]
	CME	Transistor output	Common terminal to transistor output.
	CIVIL	common	Insulated from terminals CM and 11.
Relay output	Y5A,Y5C	Relay output	Functions can be selected for signals like Y1 to Y4. Contact capacity: 250V AC, 0.3A, cosø=0.3 (48V DC, 0.5A in compliance with Low Voltage directive)
	20 A 20 B	Alarm relay output	Outputs a non-voltage contact signal (1C) when a protective function is activated to stop inverter.
	30A,30B,	(for any fault)	Contact capacity: 250V AC, 0.3A cosø=0.3 (48V DC, 0.5A in compliance with Low Voltage directive) Can select alarm for exciting or non exciting conditions.
Communications	DV(.) DV(.)		
		RS-485 communications input/output	Input/output terminals for RS-485 communications. Can connect up to 31 inverters through a multidrop (daisy chain) connection.
	SD(M)	Communications	Connects to the shield cable.
	SD(IVI)	shield cable connection	Connects to the smell cable.
Speed detection	PA,PB	Pulse generator 2-phase signal input	Terminals for connecting 2-phase signal of pulse generator.
	PGP,PGM	Pulse generator power supply	+15V DC pulse generator power supply (or can be switched to +12V).
	FA,FB	Pulse generator output	Outputs pulse generator signal by dividing by n. The "n" can be changed by function code E29.
	СМ	Pulse generator output common	Common terminals to FA and FB.
Temperature detection	тн1,тнс	NTC Thermistor PTC Thermistor	Motor temperature can be detected with the NTC and the PTC thermistors. The motor overheat protective level can be specified by the PTC thermistor function.

Basic Wiring Diagram


- Serial interface (RS48

 (*1) Use twisted cables or shielded cables for the wire indicated with (**);

 (*2) When connecting a DC REACTOR, remove the jumper wire between the P1 and P (+) terminals.

 (*3) The power supply for cooling fan for motors of 7.5kW or less is single-phase. Connect to the FU and the FV terminals. The cooling fan for models of 7.5kW or less for the 400V series is 200V/50Hz or 200 to 230V/60Hz. The cooling fan for models of 11kW or more for the 400V series is 400 to 420V/50Hz or 400 to 440V/60Hz. Obtain a transformer when using the fan for the power supply voltage that is not mentioned above.
- (*4) The 24V power system and the 15V power system are insulated inside the inverter unit

Terminal Arrangement

Oparation Procedures

Names and functions of the KEYPAD

LED monitor

Operation mode:

Displays the setting frequency, output current, output voltage, motor speed, and line speed.

Trip mode:

Displays the cause of a trip.

Unit indication

Displays the unit for the information that appears on the LED monitor.

Up/Down keys

Operation mode:

Increases or decreases the speed.

Program mode:

Changes the function codes and specified data values.

Program key

Switches the display to the menu screen or the initial screens for the operation and alarm modes.

Shift key (column shift)

Used to move the cursor horizontally for data change and to jump to another function block (when pressed with the UP/DOWN keys)

Reset key

Program mode:

Cancels the current input data and changes the screen.

Trip mode:

Releases from a trip stoppage.

LCD monitor

Displays different information ranging from operation status to function data.

Operation guidance is displayed scrolling at the bottom.

FWD/REV keys

Operation mode:
Pressing the FWD or REV
key lights the RUN lamp.
Invalid when the function
code F02 (Operation
method) is set to 1
(external signal operation).

Invalid when the function code F02 (Operation method) is set to 1 (external signal operation).

Stop key

Function/Data select key

Used to switch the displayed value of LED monitor, input the speed setting and store the function code data.

KEYPAD operation

Turn on the inverter, set the speed with the and the keys, press the key, and then press the or the key to operate the inverter with the function codes set at factory shipment.

Press the key to stop the inverter.

See the Basic wiring diagram on page 22 for the connection.

Function setting

F: Fundamental Functions

Function code	485 No.	Link No.	Name	Setting range	Min. unit
F00	0h	80(50h)	Data protection	0-1	1
F0 1	1h		Speed setting N1	0 – 7	1
F02	2h		Operation method	0-1	1
F03	3h	81(51h)	M1 max. speed	50 - 1500 - 24000 r/min	1
FOY	4h	82(52h)	M1 rated speed	50 – 24000 r/min	1
F05	5h	83(53h)	M1 rated voltage	80 – 999 V	1
FOR	7h	84(54h)	Acceleration time 1	0.01 - 5.00 - 99.99s	0.01
				100.0 – 999.9s	0.1
500				1000 – 3600s	1
F08	8h	85(55h)	Deceleration time 1	0.01 - <mark>5.00</mark> - 99.99s	0.01
				100.0 – 999.9s	0.1
				1000 – 3600s	1
F 10	Ah	86(56h)	M 1 electronic thermal overload relay (Select)	0-2	1
FII	Bh	87(57h)	M1 electronic thermal overload relay (Level)	0.01 – 99.99A 100.0 – 999.9A 1000 – 2000A	0.01 0.1 1
F 12	Ch	88(58h)	M1 electronic thermal overload relay (Thermal time constant)	0.5 – 75.0 min	0.1
F 14	Eh		Restart mode after momentary power failure (Select)	05	1
FIT	11h		Gain (for speed setting signal 12)	0.0 - 100.0 - 200.0 %	0.1
F 18	12h		Bias (for speed setting signal 12)	-24000 – 0 – 24000 r/min	1
F 20	14h	89(59h)	DC brake (Starting speed)	0 – 3600 r/min	1
F2 1	15h	90(5Ah)	DC brake (Braking level)	0 – 100 %	1
F22	16h	91(5Bh)	DC brake (Braking time)	0.0 – 30.0 s	0.1
F23	17h	92(5Ch)	Starting speed	0.0 – 30.0 s	1
	18h	. ,	Starting speed (Holding time)	0.00 - 10.00 s	0.01
F24		93(5Dh)			
F28	1Ah	94(5Eh)	Motor sound (Carrier freq.)	0.75 – <mark>7</mark> – 15 kHz	1
F27	1Bh	95(5Fh)	Motor sound (Sound tone)	0 - 3	1
F 36	24h	00/001	30RY operation mode	0-1	1
F37	25h	96(60h)	Stop speed	0.0 - 10.0 - 150.0 r/min	0.1
F 38	26h	97(61h)	Stop speed (Detection method)	0-1	1
F 39	27h	98(62h)	Stop speed (Zero speed holding time)	0.00 - 0.50 - 10.00 s	0.01
F40	28h	99(63h)	Torque limiter mode 1	0-3	1
FYI	29h	100(64h)	Torque limiter mode 2	0-3	1
F45	2Ah	101(65h)	Torque limiter value (level 1) selection	0 – 5	1
F43	2Bh	102(66h)	Torque limiter value (level 2) selection	0-5	1
FYY	2Ch	103(67h)	Torque limiter value (level 1)	-300 - 150 - 300 %	1
F45	2Dh	104(68h)	Torque limiter value (level 2)	-300 - 10 - 300 %	1
F48	2Eh	105(69h)	Mechanical loss compensation value	-300.00 - 0.00 - 300.00 %	0.01
FHT	2Fh	106(6Ah)	Torque bias T1	-300.00 - 0.00 - 300.00 %	0.01
F48	30h		Torque bias T2	-300.00 - 0.00 - 300.00 %	0.01
F43	31h		Torque bias T3	-300.00 - 0.00 - 300.00 %	0.01
F50	32h		Torque bias activation timer	0.00 – 1.00 s	0.01
F5 1	33h	251(FBh)	Torque reference monitor (Polarity selection)	0-1	1
F52	34h		LED monitor (Display coefficient A)	-999.00 - 1.00 - 999.00	0.01
F53	35h		LED monitor (Display coefficient B)	-999.00 - 1.00 - 999.00	0.01
FSH	36h		LED monitor (Display filter)	0.0 - <mark>0.2</mark> - 5.0 s	0.1
F55	37h		LED monitor (Display selection)	0 - 28	1
F58	38h		LED monitor (Display at stopping state)	0-1	1
F57	39h		LCD monitor (Display selection)	0-1	1
F58	3Ah		LCD monitor (Language selection)	0 – 7	1
F59	3Bh		LCD monitor (Contrast adjusting)	0 - 5 - 10	1
F50	3Ch		Output unit (HP/kW) selection	0-1	1
	3Dh	107(6Bh)		0.1 - 10.0 - 200.0 (times)	0.1
F6 1	3Eh	107(6BH)		0.010 - 0.200 - 1.000 s	
F62	3Fh	108(6CH)		0.000 - 9.999 s	0.001
F63		` '	ASR1-FF (Gain)		0.001
F84	40h	110(6Eh)	·	0.000 - 0.040 - 5.000 s	0.001
F65	41h	111(6Fh)	ASR1 detection filter	0.000 - 0.005 - 0.100 s	0.001
F55	42h	112(70h)	ASR1 output filter	0.000 - 0.002 - 0.100 s	0.001
F57	43h	113(71h)	S-curve acceleration start side 1	0 – 50 %	1

You can change the setting of the functions indicated with uring operation. Stop the operation before

indicates the factory setting.

Function code	485 No.	Link No.	Name	Setting range	Min. unit
F88	44h	114(72h)	S-curve acceleration end side 1	0 – 50 %	1
F88	45h	115(73h)	S-curve deceleration start side 1	0 – 50 %	1
F70	46h	116(74h)	S-curve deceleration end side 1	0 – 50 %	1
F73	49h		Magnetic-flux level at light load	10 – 100 %	1
FTH	4Ah	117(75h)	Pre-excitation time	0.0 – 10.0 s	0.1
F75	4Bh	118(76h)	Pre-excitation initial level	100 – 400 %	1
F78	4Ch		Speed limiter (method selection)	0-3	1
FTT	4Dh		Speed limiter level 1	-110.0 - 100.0 - 110.0 %	0.1
F78	4Eh		Speed limiter level 2	-110.0 - 100.0 - 110.0 %	0.1
F73	4Fh	119(77h)	Motor selection (M1, M2, M3)	0-2	1
F80	50h		Current rating switching	0-2	1

E: Extension Terminal Functions

Function code	485 No.	Link No.	Name	Setting range	Min. unit
E0 1	101h	120(78h)	X1 function selection	0 – 63	1
E02	102h	121(79h)	X2 function selection	0 - 1 - 63	1
E03	103h	122(7Ah)	X3 function selection	0 - 2 - 63	1
<i>E04</i>	104h	123(7Bh)	X4 function selection	0 - 3 - 63	1
<i>E05</i>	105h	124(7Ch)	X5 function selection	0 - 4 - 63	1
E08	106h	125(7Dh)	X6 function selection	0 - 5 - 63	1
E07	107h	126(7Eh)	X7 function selection	0 - 7 - 63	1
E08	108h	127(7Fh)	X8 function selection	0 - 8 - 63	1
E09	109h	128(80h)	X9 function selection	0 - 9 - 63	1
E 10	10Ah	129(81h)	X11 function selection	0 - 25 - 63	1
E 11	10Bh	130(82h)	X12 function selection	0 - 25 - 63	1
E 12	10Ch	131(83h)	X13 function selection	0 - 25 - 63	1
E 13	10Dh	132(84h)	X14 function selection	0 - 25 - 63	1
E 14	10Eh	400(051-)	X function normally open/normally closed	0000 - 01FF	1
E 15	10Fh	133(85h)	Y1 function selection	0 - 1 - 47	1
E 15	110h	134(86h)	Y2 function selection	0 - 2 - 47	1
E 17	111h	135(87h)	Y3 function selection Y4 function selection	0 - <mark>3 - 47</mark> 0 - 4 - 4 7	1
E 18	112h 113h	136(88h)	Y5 function selection		1
E 19 E 20	114h	137(89h)	Y11 function selection	0 - 14 - 47 0 - 26 - 47	1
	115h	138(8Ah) 139(8Bh)	Y12 function selection	0 - 26 - 47	1
E21	116h	140(8Ch)	Y13 function selection	0 - 26 - 47	1
E23	117h	140(8CH)	Y14 function selection	0 - 26 - 47	1
E24	118h	142(8Eh)	Y15 function selection	0 - 26 - 47	1
E25	119h	143(8Fh)	Y16 function selection	0 - 26 - 47	1
E28	11Ah	144(90h)	Y17 function selection	0 - 26 - 47	1
E27	11Bh	145(91h)	Y18 function selection	0 - 26 - 47	1
E28	11Ch	(,	Y function normally open/normally closed	0000 - 001F	1
E29	11Dh	146(92h)	PG pulse output selection	0 - 9	1
E30	11Eh	, ,	Motor overheat protection (Temperature)	100 - 150 - 200 °C	1
E3 I	11Fh		Motor overheat early warning (Temperature)	50 - 75 - 200 °C	1
E32	120h	205(CDh)	M1-M3 PTC operation level	0.00 - 1.60 - 5.00 V	0.01
833	121h		Inverter overload early warning	25 - 90 - 100 %	1
834	122h		Motor overload early warning	25 - 90 - 100 %	1
835	123h		DB overload protection	0 – 100 %	1
E 36	124h		DB overload early warning	0 - 80 - 100 %	1
837	125h		DB thermal time constant	0 - 300 - 1000 s	1
E38	126h	147(93h)	Speed detection method	000 – 111	1
839	127h	148(94h)	Speed detection level 1	0 - 1500 - 24000 r/min	1
E40	128h	149(95h)	Speed detection level 2	-24000 – 1500 – 24000 r/min	1
E41	129h	150(96h)	Speed detection level 3	-24000 – 1500 – 24000 r/min	1
E42	12Ah	151(97h)	Speed equivalence (Detection range)	1.0 - 3.0 - 20.0 %	0.1
ЕЧЗ	12Bh	152(98h)	Speed agreement (Detection range)	1.0 - 3.0 - 20.0 %	0.1
ЕЧЧ	12Ch	153(99h)	Speed agreement (Off delay timer)	0.000 - 0.100 - 1.000 s	0.001
E45	12Dh	154(9Ah)	Enable/disable alarm for speed disagreement	00 – 21	1

indicates the factory setting.

Function code	485 No.	Link No.	Name	Setting range	Min unit
E48	12Eh	155(9Bh)	Torque detection level 1	1 - 30 - 300 %	1
E47	12Fh	156(9Ch)	Torque detection level 2	1 - 30 - 300 %	1
E48	130h	157(9Dh)	Magnetic-flux detection level	10 - 100 %	1
E49	131h		Ai1 function selection	0 – 18	1
E 50	132h		Ai2 function selection	0 – 18	1
	133h		Ai3 function selection	0 – 18	1
	100		7 10 1011011011 0010011011	(Displayed when AIO option installed)	ľ
552	134h		Ai4 function selection	0 – 18	1
				(Displayed when AIO option installed)	
FSR	135h		Ai1 gain setting		0.00
E54	136h		Ai2 gain setting	-10.000 - 1.000 - 10.000 (times)	0.00
	137h		Ai3 gain setting	-10.000 - 1.000 - 10.000 (times)	0.00
			gg	(Displayed when AIO option installed)	
E 5.6	138h		Ai4 gain setting	-10.000 - 1.000 - 10.000 (times)	0.00
בשט	10011		Thir gain setting	(Displayed when AIO option installed)	0.00
E57	120h		Ait bigg softing	-100.0 - 0.0 - 100.0 %	0.1
			Ai1 bias setting		-
<u>858</u>	13Ah		Ai2 bias setting	-100.0 - 0.0 - 100.0 %	0.1
E59	13Bh		Ai3 bias setting	-100.0 - 0.0 - 100.0 %	0.1
				(Displayed when AIO option installed)	
E 60	13Ch		Ai4 bias setting	-100.0 - <mark>0.0</mark> - 100.0 %	0.1
				(Displayed when AIO option installed)	
<u>88 I</u>	13Dh		Ai1 filter setting	0.000 - 0.010 - 0.500 s	0.00
<u>882</u>	13Eh		Ai2 filter setting	0.000 - 0.010 - 0.500 s	0.00
E63	13Fh		Ai3 filter setting	0.000 - 0.010 - 0.500 s	0.00
				(Displayed when AIO option installed)	
E54	140h		Ai4 filter setting	0.000 - 0.010 - 0.500 s	0.00
				(Displayed when AIO option installed)	
E65	141h		Increment/decrement limiter (Ai1)	0.00 - 60.00 s	0.01
	142h		Increment/decrement limiter (Ai2)	0.00 - 60.00 s	0.01
E 6 7	143h		Increment/decrement limiter (Ai3)	0.00 - 60.00 s	0.01
			, ,	(Displayed when AIO option installed)	
E 58	144h		Increment/decrement limiter (Ai4)	0.00 - 60.00 s	0.01
			mission of decision minutes (var)	(Displayed when AIO option installed)	
E 6 9	145h		AO1 function selection	0 - 1 - 31	1
	146h			0-6-31	1
			AO2 function selection AO3 function selection		
<u> </u>	147h			0 - 3 - 31	1
E72	148h		AO4 function selection	0 – 31	1
				(Displayed when AIO option installed)	
E73	149h		AO5 function selection	0 – 31	1
				(Displayed when AIO option installed)	
E74	14Ah		AO1 gain setting	-100.00 — <mark>1.00</mark> — 100.00	0.01
E75	14Bh		AO2 gain setting	-100.00 - 1.00 - 100.00	0.01
E78	14Ch		AO3 gain setting	-100.00 - 1.00 - 100.00	0.01
ยาก	14Dh		AO4 gain setting	-100.00 - <mark>1.00</mark> - 100.00	0.01
				(Displayed when AIO option installed)	
E78	14Eh		AO5 gain setting	-100.00 - 1.00 - 100.00	0.01
				(Displayed when AIO option installed)	
E79	14Fh		AO1 bias setting	-100.0 - 0.0 - 100.0 %	0.1
E80	150h		AO2 bias setting	-100.0 - 0.0 - 100.0 %	0.1
E8 1	151h		AO3 bias setting	-100.0 - 0.0 - 100.0 %	0.1
<u>882</u>	152h		AO4 bias setting	-100.0 - 0.0 - 100.0 %	0.1
LUC	10211		Sido dotting	_	0.1
CD2	1505		AOE higg patting	(Displayed when AIO option installed)	0.4
E83	153h		AO5 bias setting	-100.0 - 0.0 - 100.0 %	0.1
				(Displayed when AIO option installed)	

You can change the setting of the functions indicated with during operation. Stop the operation before changing other functions.

C:Control Functions of Frequency

Function code	485 No.	Link No.	Name	Setting range	Min. unit
001	201h		Jump speed 1	0 – 24000 r/min	1
500	202h		Jump speed 2	0 – 24000 r/min	1
003	203h		Jump speed 3	0 – 24000 r/min	1
PB3	204h		Jump hysteresis	0 – 1000 r/min	1
005	205h	158(9Eh)	Multistep speed 1	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
603	206h	159(9Fh)	Multistep speed 2	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
007	207h	160(A0h)	Multistep speed 3	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
08	208h	161(A1h)	Multistep speed 4	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
C 0 9	209h	162(A2h)	Multistep speed 5	0 – 24000 r/min	1
205		, ,		0.00 – 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	
C 10	20Ah	163(A3h)	Multistep speed 6	0 – 24000 r/min	1
L 10	207.111	100(11011)	municip oposa s	0.00 – 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	
E 11	20Bh	164(A4b)	Multistep speed 7	0 – 24000 r/min	1
LII	20bii	164(A4h)	Mullistep speed 7		
				0.00 - 100.00 %	0.01
C 13	0001		M III .	0.0 - 999.9 m/m (Switch with C21)	
E 12	20Ch		Multistep speed 8	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	
E 13	20Dh		Multistep speed 9	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	
E 14	20Eh		Multistep speed 10	0 – 24000 r/min	1
				0.00 – 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	
E 15	20Fh		Multistep speed 11	0 – 24000 r/min	1
				0.00 – 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
E 15	210h		Multistep speed 12	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
ב וח	211h		Multistep speed 13	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
E 18	212h		Multistep speed 14/Creep speed 1	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
E 19	213h		Multistep speed 15/Creep speed 2	0 – 24000 r/min	1
				0.00 - 100.00 %	0.01
				0.0 - 999.9 m/m (Switch with C21)	0.1
053	214h		Multistep speed reference agreement timer	0.000 - 0.100 s	0.001
	215h		Multistep setting definition	0-2	1
	219h		Speed setting N2	0-7	1
	21Dh		Jogging speed	0 – 50 – 24000 r/min	1
	21Eh		ASR-P (Gain) JOG	0.1 - 10.0 - 200.0 (times)	0.1
	21Fh		ASR-I (Constant of integration) JOG	0.010 - 0.200 - 1.000 s	0.001
			ASR-JOG input filter	0.000 - 0.040 - 5.000 s	
LBC	220h				0.001
C 201	221h		ASR-JOG detection filter	0.000 - 0.005 - 0.100 s	0.001
LJY	222h		ASR-JOG output filter	0.000 - 0.002 - 0.100 s	0.001

Function setting

P:Motor	Parameters	

indicates the factory setting.

Function code	485 No.	Link No.	Name	Setting range	Min. unit
P0 1	301h		M1 control method	0 - 3	1
P02	302h		M1 motor selection	0 – 37	1
P03	303h	167(A7h)	M1 rated capacity	0.00 - 900.0kW (F60 = 0)	0.01
				0.00 - 120.0HP (F60 = 1)	
POY	304h	168(A8h)	M1 rated current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
P05	305h	169(A9h)	M1 pole number	2-4-30 (poles)	2
P08	306h	170(AAh)	M1-%R1	0.00 - 30.00 %	0.01
207	307h	171(ABh)	M1-%X	0.00 - 50.00 %	0.01
P08	308h	172(ACh)	M1 exciting current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
P09	309h	173(ADh)	M1 torque current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
P 10	30Ah	174(AEh)	M1 slip on driving	0.001 – 10.000 Hz	0.001
P 11	30Bh	175(AFh)	M1 slip on braking	0.001 – 10.000 Hz	0.001
P 12	30Ch	176(B0h)	M1 iron loss coefficient 1	0.00 - 10.00 %	0.01
P 13	30Dh	177(B1h)	M1 iron loss coefficient 2	0.00 - 10.00 %	0.01
P 14	30Eh	178(B2h)	M1 iron loss coefficient 3	0.00 - 10.00 %	0.01
P 15	30Fh	179(B3h)	M1 magnetic saturation coefficient 1	0.0 – 100.0 %	0.1
P 15	310h	180(B4h)	M1 magnetic saturation coefficient 2	0.0 – 100.0 %	0.1
P/P	311h	181(B5h)	M1 magnetic saturation coefficient 3	0.0 – 100.0 %	0.1
P 18	312h	182(B6h)	M1 magnetic saturation coefficient 4	0.0 – 100.0 %	0.1
P 19	313h	183(B7h)	M1 magnetic saturation coefficient 5	0.0 – 100.0 %	0.1
P20	314h	184(B8h)	M1 secondary time constant	0.001 - 9.999 s	0.001
P2 1	315h	185(B9h)	M1 induced voltage coefficient	0 – 999 V	1
P22	316h	186(BAh)	M1-R2 correction coefficient 1	0.500 - 5.000	0.001
P23	317h	187(BBh)	M1-R2 correction coefficient 2	0.500 - 5.000	0.001
P24	318h	188(BCh)	M1-R2 correction coefficient 3	0.010 - 5.000	0.001
P25	319h	189(BDh)	M1 exciting current correction coefficient	0.000 - 5.000	0.001
<i>P2</i> 6	31Ah	190(BEh)	M1-ACR-P (Gain)	0.1 – 20.0	0.1
P27	31Bh	191(BFh)	M1-ACR-I (Integration time)	0.5 – 100.0 ms	0.1
P28	31Ch	192(C0h)	M1-PG pulse number	100 - 1024 - 60000	1
P29	31Dh	214(D6h)	M1 external PG correction coefficient	0000 - 4000 - 4FFF	1
P30	31Eh	193(C1h)	M1 thermistor selection	0-1-3	1

H:High Performance Functions

Function code	485 No.	Link No.	Name	Setting range	Min. unit
H0 1	401h		Tuning operation selection	0-4	1
H02	402h	14(0Eh)	All save function	0-1	1
H03	403h		Data initializing	0-1	1
HBY.	404h		Auto-reset (Times)	0 – 10	1
HOS	405h		Auto-reset (Reset interval)	0.01 - 5.00 - 20.00 s	0.01
H05	406h		Fan stop operation	0-1	1
H08	408h		Rev. phase sequence lock	0-1	1
H09	409h	194(C2h)	Start mode (Rotating motor pick up)	0-2	1
H 10	40Ah	195(C3h)	Energy-saving operation	0-1	1
HII	40Bh		Automatic operation OFF function	0-2	1
H 13	40Dh	196(C4h)	Auto-restart (Restart time)	0.1 - 0.5 - 5.0 s	0.1
H 14	40Eh		Auto-restart (Speed fall rate)	1 - 500 - 3600 (r/min/s)	1
H 15	40Fh		Auto- restart (Holding DC voltage)	200 - 235 - 300V (3-Phase 200V series)	1
				400 - 470 - 600V (3-Phase 400V series)	
H 15	410h		Auto-restart (Operation command	0 – 1	1
			selfhold setting)		

Function code	485 No.	Link No.	Name	Setting range	Min. unit
835	223h		Acceleration time JOG	0.01 - 5.00 - 99.99s	0.01
				100.0 - 999.9s	0.1
				1000 – 3600s	1
038	224h		Deceleration time JOG	0.01 - 5.00 - 99.99s	0.01
				100.0 - 999.9s	0.1
				1000 – 3600s	1
637	225h		S-curve start side JOG	0 – 50 %	1
	226h		S-curve end side JOG	0 - 50 %	1
	228h		ASR2-P Gain	0.1 - 10.0 - 200.0 (times)	0.1
	229h		ASR2-I (Constant of integration)	0.010 - <mark>0.200</mark> - 1.000 s	0.001
	22Ah		ASR2-FF (Gain)	0.000 - 9.999 s	0.001
	22Bh		ASR2 input filter	0.000 - 0.040 - 5.000 s	0.001
199			ASR2 detection filter	0.000 - 0.005 - 0.100 s	0.001
	22Dh		ASR2 output filter	0.000 - 0.002 - 0.100 s	0.001
E48	22Eh		Acceleration time 2	0.01 - 5.00 - 99.99s	0.01
L 10	22211		Acceleration time 2	100.0 – 999.9s	0.1
				1000 – 3600s	1
<u> </u>	22Eh		Deceleration time 2	0.01 - 5.00 - 99.99s	0.01
L 7.1	22711		Decemenation time 2		0.01
				100.0 – 999.9s 1000 – 3600s	1
CUO	2001		0		
	230h		S-curve start side 2	0 – 50 %	1
~	231h		S-curve end side 2	0 – 50 %	1
	232h		ASR3-P gain	0.1 - 10.0 - 200.0 (times)	0.1
	233h		ASR3-I (Constant of integration)	0.010 - 0.200 - 1.000 s	0.001
	234h		ASR3-FF (Gain)	0.000 - 9.999 s	0.001
	235h		ASR3 input filter	0.000 - 0.040 - 5.000 s	0.001
<u> 554</u>			ASR3 detection filter	0.000 - 0.005 - 0.100 s	0.001
	237h		ASR3 output filter	0.000 - 0.002 - 0.100 s	0.001
£58	238h		Acceleration time 3	0.01 - 5.00 - 99.99s	0.01
				100.0 – 999.9s	0.1
				1000 – 3600s	1
657	239h		Deceleration time 3	0.01 - 5.00 - 99.99s	0.01
				100.0 – 999.9s	0.1
				1000 – 3600s	1
058	23Ah		S-curve start side 3	0 – 50 %	1
659	23Bh		S-curve end side 3	0 – 50 %	1
680	23Ch		ASR4-P gain	0.1 - 10.0 - 200.0 (times)	0.1
E8 1	23Dh		ASR4-I (Constant of integration)	0.010 - 0.200 - 1.000 s	0.001
583	23Eh		ASR4-FF (Gain)	0.000 – 9.999 s	0.001
683	23Fh		ASR4 input filter	0.000 - 0.040 - 5.000 s	0.001
684	240h		ASR4 detection filter	0.000 - 0.005 - 0.100 s	0.001
£85	241h		ASR4 output filter	0.000 - 0.002 - 0.100 s	0.001
683	242h		Acceleration time 4	0.01 - 5.00 - 99.99s	0.01
				100.0 - 999.9s	0.1
				1000 – 3600s	1
667	243h		Deceleration time 4	0.01 - 5.00 - 99.99s	0.01
				100.0 – 999.9s	0.1
				1000 – 3600s	1
683	244h		S-curve start side 4	0 – 50 %	1
£69	245h		S-curve end side 4	0 – 50 %	1
500	246h		ASR switching time	0.00 - 1.00 - 2.55 s	0.01
ו רים	247h	165(A5h)	Acceleration/deceleration time switching speed	0.00 - 100.00%	0.01
572	248h	166(A6h)	ASR switching time	0.00 - 100.00%	0.01
[73	249h		Creep speed switching (on UP/DOWN control)	00 – 11	1
					1

You can change the setting of the functions indicated with during operation. Stop the operation before changing other functions.

indicates the factory setting.

Function code	485 No.	Link No.	Name	Setting range	Min. unit
н п	411h		Auto-restart (Operation command selfhold time)	0.0 - 30.0 s	0.1
H 19	413h	197(C5h)	Active drive	0 – 1	1
H20	414h	198(C6h)	PID control	0-3	1
H2 1	415h	199(C7h)	Command selection	0 – 1	1
H22	416h	201(C9h)	P-gain	0.000 - 1.000 - 10.000 (times)	0.001
H23	417h	202(CAh)	I-gain	0.00 - 1.00 - 100.00 s	0.01
H24	418h	203(CBh)	D-gain	0.000 - 10.000 s	0.001
H25	419h	200(C8h)	Output upper limit value	-300 - 100 - 300 %	1
H26	41Ah	204(CCh)	Output lower limit value	-300100 - 300 %	1
H27	41Bh	206(CEh)	Speed reference selection	0-2	1
H28	41Ch	207(CFh)	Droop operation	0.0 – 25.0 %	0.1
H28	41Dh		Link function protection	0-1	1
H30	41Eh	208(D0h)	Serial link	0-3	1
H3 I	41Fh		RS-485 (Address)	0 - 1 - 255	1
H32	420h		RS-485 (Mode select on no response error)	0 – 3	1
H33	421h		RS-485 (Timer)	0.01 - 2.00 - 20.00 s	0.01
нзч	422h		RS-485 (Baud rate)	0 – 4	1
H35	423h		RS-485 (Data length)	0 – 1	1
H36	424h		RS-485 (Parity check)	0-1-2	1
нэп	425h		RS-485 (Stop bits)	0 – 1	1
H38	426h		RS-485 (No response error detection time)	0.0 - 60.0 s	0.1
H39	427h		RS-485 (Response interval)	0.00 - 0.01 - 1.00 s	0.01
H40	428h		Protocol selection	0-1-2	1
H4 1	429h	209(D1h)	Torque reference selection	0 – 5	1
H45	42Ah	210(D2h)	Torque current reference selection	0 – 4	1
H 43	42Bh	211(D3h)	Magnetic-flux reference selection	0 - 3	1
нчч	42Ch	212(D4h)	Magnetic-flux reference value	10 – 100 %	1
H48	42Eh	215(D7h)	Observer type selection	0 - 2	1
HYT	42Fh	216(D8h)	M1 compensation gain	0.00 - 1.00 (times)	0.01
H48	430h		M2 compensation gain	0.00 - 1.00 (times)	0.01
H43	431h	217(D9h)	M1 integration time	0.005 - 0.100 - 1.000 s	0.001
HS0	432h		M2 integration time	0.005 - 0.100 - 1.000 s	0.001
HS I	433h	218(DAh)	M1 load inertia	0.001 - 50.000 (kg·m²)	0.001
HS2	434h		M2 load inertia	0.001 - 50.000 (kg·m²)	0.001
HS3	435h	213(D5h)	Line speed feedback selection	0 - 3	1
HSS	437h		Zero speed control (Gain)	0 - 5 - 100 (times)	1
H58	438h		Zero speed control (completion range)	0 - 100 (pulses)	1
HST	439h		Overvoltage suppressing function	0 - 1	1
HS8			Overcurrent suppressing function	0 – 1	1
H60			Load adaptive control function definition 1	0 - 3	1
H6 I			Load adaptive control function definition 2	0 - 1	1
H62	_		Winding up speed	0.0 – 999.9 m/min	0.1
	43Fh		Counter weight mass	0.00 - 600.00 (t)	0.01
H64			Safety coefficient	0.50 - 1.00 - 1.20	0.01
	441h		Mechanical efficiency	0.500 - 1.000	0.001
	442h		Rated loading	0.00 - 600.00 (t)	0.01
H68			Trip data delete	0-1	1
H70			Reserved 1	0 – 9999	1
H7 I			Reserved 2	0 - 6	1
	448h		Reserved 3	0 – 9999	1
H73	449h		Reserved 4	0 – 9999	1
11 13					

You can change the setting of the functions indicated with during operation. Stop the operation before changing other functions.

A: Alternative Motor Parameters

Function code	485 No.	Link No.	Name	Setting range	Min. unit
80 T	501h		M2 control method	0 – 1	1
802	502h		M2 rated capacity	0.00 - 900.0kW (F60=0)	0.01
				0.00 - 1200.0HP (F60=1)	
R03	503h		M2 rated current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
<i>80</i> 4	504h		M2 rated voltage	80 – 999 V	1
	505h		M2 rated voltage	50 - 1500 - 24000 r/min	1
			M2 rated speed		_
	506h		M2 maximum speed	50 – 1500 – 24000 r/min	1
	507h		M2 pole number	2 - 4 - 12 (poles)	2
	508h		M2-%R1	0.00 - 30.00 %	0.01
<i>ROS</i>	509h		M2-%X	0.00 - 50.00 %	0.01
R 10	50Ah		M2 exciting current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
811	50Bh		M2 torque current	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
0.12	500:		Mostlin on this '		
	50Ch		M2 slip on driving	0.001 – 10.000 Hz	0.001
	50Dh		M2 slip on braking	0.001 – 10.000 Hz	0.001
<u> 8 14 </u>	50Eh		M2 iron loss coefficient 1	0.00 - 10.00 %	0.01
R 15	50Fh		M2 iron loss coefficient 2	0.00 - 10.00 %	0.01
R 15	510h		M2 iron loss coefficient 3	0.00 - 10.00 %	0.01
8 17	511h		M2 magnetic saturation coefficient 1	0.0 - 100.0 %	0.1
	512h		M2 magnetic saturation coefficient 2	0.0 – 100.0 %	0.1
	513h		M2 magnetic saturation coefficient 3	0.0 – 100.0 %	0.1
	514h		-	0.0 – 100.0 %	0.1
			M2 magnetic saturation coefficient 4		1
1100	515h		M2 magnetic saturation coefficient 5	0.0 – 100.0 %	0.1
R22	516h		M2 secondary time constant	0.001 - 9.999 s	0.001
R23	517h		M2 induced voltage coefficient	0 – 999 V	1
R24	518h		M2-R2 correction coefficient 1	0.000 - 5.000	0.001
R25	519h		M2-R2 correction coefficient 2	0.000 - 5.000	0.001
858	51Ah		M2-R2 correction coefficient 3	0.010 - 5.000	0.001
R20	51Bh		M2 exciting current correction coefficient	0.000 - 5.000	0.001
	51Ch		M2-ACR-P (Gain)	0.1 - 1.0 - 20.0	0.1
	51Dh		M2-ACR-I (Integration time)	0.5 - 1.0 - 100.0 ms	0.1
	51Eh		M2-PG pulse number	100 - 1024 - 60000	1
	51Fh		,	0-1-3	1
11211	-		M2 thermistor selection		
	520h		M2 electronic thermal overload relay (Select)	0-2	1
H33	521h		M2 electronic thermal overload relay (Level)	0.01 – 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
834	522h		M2 electronic thermal overload relay	0.5 – 75.0 min	0.1
			(Thermal time constant)		
R35	523h	229(E5h)	M3 rated capacity	0.00 – 900.0kW (F60=0)	0.01
				0.00 - 1200.0HP (F60=1)	
R38	524h	230(E6h)	M3 rated current	0.01 – 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
837	525h	231(E7h)	M3 rated voltage	80 – 999 V	1
	526h	232(E8h)	M3 maximum output voltage (at V/f maximum speed)	80 – 999 V	1
1120	527h	233(E9h)	M3 rated speed	50 - 1500 - 24000 r/min	1
839 nun	528h		·		1
		234(EAh)	· ·	50 – 1500 – 24000 r/min	+
	529h	235(EBh)	M3 pole number	2 – 4 – 12 (poles)	2
	52Ah	236(ECh)		0.00 – 30.00 %	0.01
843	52Bh	237(EDh)	M3-%X	0.00 - 50.00 %	0.01
ЯЧЧ	52Ch	238(EEh)	M3 exciting current	0.01 – 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1

Function setting

indicates the factory setting.

Function code	485 No.	Link No.	Name	Setting range	Min. unit
848	52Eh	240(F0h)	M3 torque boost	0.0 - 20.0	0.1
847	52Fh	241(F1h)	M3 thermistor selection	0-1-3	1
848	530h	242(F2h)	M3 electronic thermal overload relay (Select)	0-2	1
849	531h	243(F3h)	M3 electronic thermal overload relay (Level)	0.01 - 99.99A	0.01
				100.0 – 999.9A	0.1
				1000 – 2000A	1
850	532h	244(F4h)	M3 electronic thermal overload relay (Thermal time constant)	0.5 – 75.0 min	0.1

O:Optional Functions

Function code	485 No.	Link No.	Name	Setting range	Min. unit
o0 1	601h	245(F5h)	DIA function selection	0 – 1	1
602	602h	246(F6h)	DIB function selection	0 – 1	1
о03	603h		DIA BCD input setting	99 - 1000 - 7999	1
оθЧ	604h		DIB BCD input setting	99 - 1000 - 7999	1
o05	605h		Feedback pulse selection	0 – 1	1
008	606h		Digital line speed detection definition (PG pulse number)	100 - 1024 - 60000 (P/R)	1
007	607h		Digital line speed detection definition (Detected pulse correction 1)	0 - 1000 - 9999	1
008	608h		Digital line speed detection definition (Detected pulse correction 2)	0 - 1000 - 9999	1
o09	609h		ABS signal input definition (Synchronization)	0 – 16	1
o 10	60Ah		Magnetic pole position offset (Synchronization)	0000 – FFFF	1
011	60Bh		Salient pole ratio (%Xq/%Xd)	1.000 - 3.000	0.001
o 12	60Ch		Reference pulse selection	0 – 1	1
o 13	60Dh		Pulse train input form selection	0-2	1
o 14	60Eh	247(F7h)	Reference pulse correction 1	0 - 1000 - 9999	1
o 15	60Fh	248(F8h)	Reference pulse correction 2	0 - 1000 - 9999	1
o 18	610h	249(F9h)	APR gain	0.1 – 999.9 (times)	0.1
o 17	611h	250(FAh)	F/F gain	0.0 – 1.5 (times)	0.1
o 18	612h		Deviation excess range	0 - 65535 (pulses)	1
o 19	613h		Deviation zero range	0 - 20 - 1000 (pulses)	1
o30	61Eh		Action on communications error	0 - 3	1
631	61Fh		Action time on communications error	0.01 - 0.10 - 20.00 s	0.01
632	620h		Communications format	0 – 1	1
633	621h	253(FDh)	Multiwinding system	0 – 1	1
634	622h		Multiwinding system slave station number	1-5	1
635	623h		Link station adress	0 – 255	1
o38	624h		Link system slave station number	1 – 155	1
637	625h		Communications definition setting	0000 - 0010 - 0124	1
o38	626h		UPAC start/stop	0-2	1
o39	627h		UPAC memory mode	00 – 1F	1
o40	628h		UPAC Address	100 – 255	1

You can change the setting of the functions indicated with _____ during operation. Stop the operation before changing other functions.

Function codes "S" and "M" are codes to access the inverter through links (RS485, T-Link, SX communications, field bus , etc). You cannot use them with the KEYPAD panel.

Though you can access the codes "F", "E", and "C" through these links, these links are specifically designed to access the code "S" for operation and control and the "M" for data monitoring.

S:Serial Communication Functions

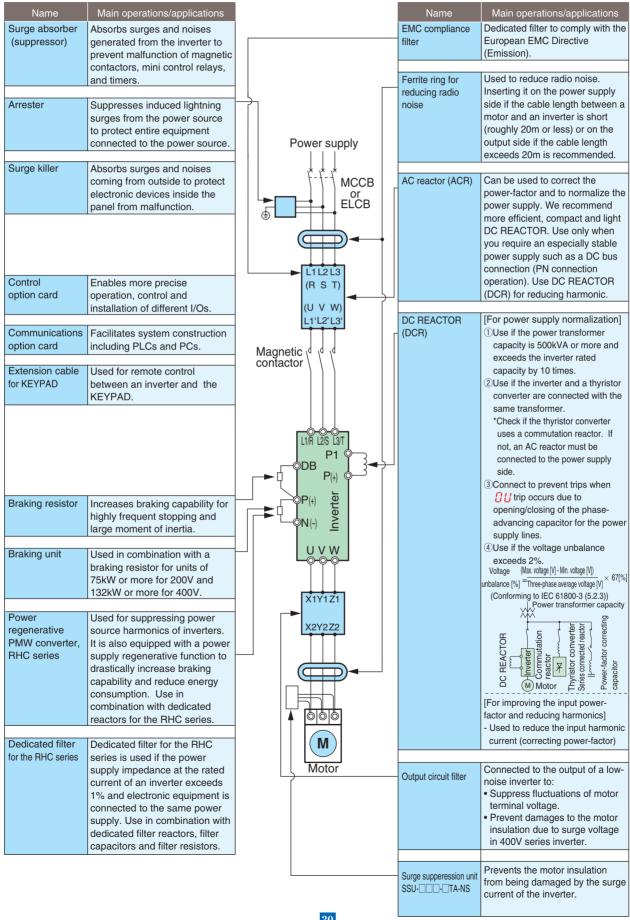
Function code	485 No.	Link No.	Name	Setting range	Min. unit
S01	701h	1(1h)	Frequency/speed reference (Setting 1)	-24000 – 24000 r/min	1
S02	702h	2(2h)	Torque reference	0.01% / 1d	0.01
S03	703h	3(3h)	Torque current reference	0.01% / 1d	0.01
S04	704h	4(4h)	Magnetic-flux reference	0.01% / 1d	0.01
S05	705h	5(5h)	Orientation position reference	0000 - FFFF	1
S06	706h	6(6h)	Operation method 1	0000 – FFFF	1
S07	707h	7(7h)	Universal Do	0000 - FFFF	1
S08	708h	8(8h)	Acceleration time	0.0 - 3600.0 s	0.1
S09	709h	9(9h)	Deceleration time	0.0 - 3600.0 s	0.1
S10	70Ah	10(Ah)	Torque limiter level 1	0.01% / 1d	0.01
S11	70Bh	11(Bh)	Torque limiter level 2	0.01% / 1d	0.01
S12	70Ch	12(Ch)	Operation method 2	0000 – FFFF	1

M:Monitoring Functions

Function code	485 No.	Link No.	Name	Setting range	Min. unit
M01	801h	15(Fh)	Speed setting 4 (ASR input)	-24000 – 24000 r/min	1
M02	802h	16(10h)	Torque reference	0.01% / 1d	0.01
M03	803h	17(11h)	Toque current reference	0.01% / 1d	0.01
M04	804h	18(12h)	Magnetic-flux reference	0.01% / 1d	0.01
M05	805h	19(13h)	Output frequency reference	0.1Hz / 1d	0.1
M06	806h	20(14h)	Detected speed value	-24000 – 24000 r/min	1
M07	807h	21(15h)	Calculated torque value	0.01% / 1d	0.01
M08	808h	22(16h)	Calculated torque current value	0.01% / 1d	0.01
M09	809h	23(17h)	Output frequency	0.1Hz / 1d	0.1
M10	80Ah	24(18h)	Motor output	0.1kW / 1d	0.1
M11	80Bh	25(19h)	Output current rms value	0.1A / 1d	0.1
M12	80Ch	26(1Ah)	Output voltage rms value	0.1V / 1d	0.1
M13	80Dh	27(1Bh)	Operation method (final command)	0000 – FFFF	1
M14	80Eh	28(1Ch)	Operation status	0000 – FFFF	1
M15	80Fh	29(1Dh)	Output terminals Y1 - Y18	0000 – FFFF	1
M16	810h	30(1Eh)	Latest alarm data	0 – 48	1
M17	811h	31(1Fh)	Last alarm data	0 – 48	1
M18	812h	32(20h)	Second last alarm data	0 – 48	1
M19	813h	33(21h)	Third last alarm data	0 – 48	1
M20	814h	34(22h)	Accumulated operation time	0 – 65535 h	1
M21	815h	35(23h)	DC link circuit voltage	1V / 1d	1
M22	816h	36(24h)	Motor temperature	1°C / 1d	1
M23	817h	37(25h)	Type code	0000 – FFFF	1
M24	818h	38(26h)	Capacity code	0-29	1
M25	819h	39(27h)	Inverter ROM (main control) version	0000 – FFFF	1
M26	81Ah	40(28h)	Communications error code	0 - 65535	1
M27	81Bh	41(29h)	Speed setting on alarm	-24000 – 24000 r/min	1
M28	81Ch	42(2Ah)	Torque reference on alarm	0.01% / 1d	0.01
M29	81Dh	43(2Bh)	Torque current reference on alarm	0.01% / 1d	0.01
M30	81Eh	44(2Ch)	Magnetic-flux reference on alarm	0.01% / 1d	0.01
M31	81Fh	45(2Dh)	Output frequency reference on alarm	0.1Hz / 1d	0.1
M32	820h	46(2Eh)	Detected speed on alarm	-24000 – 24000 r/min	1
M33	821h	47(2Fh)	Calculated torque on alarm	0.01% / 1d	0.01
M34	822h	48(30h)	Calculated torque current on alarm	0.01% / 1d	0.01

Function code	485 No.	Link No.	Name	Setting range	Min. unit
M35	823h	49(31h)	Output frequency on alarm	0.1Hz / 1d	0.1
M36	824h	50(32h)	Motor output on alarm	0.1kW / 1d	0.1
M37	825h	51(33h)	Output current rms value on alarm	0.1A / 1d	0.1
M38	826h	52(34h)	Output voltage rms value on alarm	0.1V / 1d	0.1
M39	827h	53(35h)	Operation method on alarm	0000 – FFFF	1
M40	828h	54(36h)	Operation status on alarm	0000 – FFFF	1
M41	829h	55(37h)	Output terminal on alarm	0000 – FFFF	1
M42	82Ah	56(38h)	Accumulated operation time on alarm	0 – 65535 h	1
M43	82Bh	57(39h)	DC link circuit voltage on alarm	1V / 1d	1
M44	82Ch	58(3Ah)	Inverter internal temperature on alarm	1°C / 1d	1
M45	82Dh	59(3Bh)	Heat sink temperature on alarm	1°C / 1d	1
M46	82Eh	60(3Ch)	Main circuit capacitor life on alarm	0 – 100%	1
M47	82Fh	61(3Dh)	PC board capacitor life on alarm	0 – 65535 h	1
M48	830h	62(3Eh)	Cooling fan life	0 – 65535 h	1
M49	831h	63(3Fh)	Speed setting 1 (before multistep speed command)	-24000 – 24000 r/min	1
M50	832h	64(40h)	Speed setting 2 (before calculation of accel./decel.)	-24000 – 24000 r/min	1
M51	833h	65(41h)	Speed setting 3 (after speed limit)	-24000 – 24000 r/min	1
M52	834h	66(42h)	Control output 1	0000 – FFFF	1
M53	835h	67(43h)	Control output 2	0000 – FFFF	1
M54	836h	68(44h)	Control output 3	0000 – FFFF	1
M55	837h	69(45h)	Option monitor 1	0000 – FFFF	1
M56	838h	70(46h)	Option monitor 2	0000 – FFFF	1
M57	839h	71(47h)	Option monitor 3	0 - 65535	1
M58	83Ah	72(48h)	Option monitor 4	0 – 65535	1
M59	83Bh	73(49h)	Option monitor 5	-32768 – 32767	1
M60	83Ch	74(4Ah)	Option monitor 6	-32768 – 32767	1

U:User Functions(UPAC)


Function code	485 No.	Link No.	Name	Setting range	Min. unit
U0 1	B01h	219(DBh)	USER P1	-32768 – 32767	1
<i>U02</i>	B02h	220(DCh)	USER P2	-32768 – 32767	1
<i>U03</i>	B03h	221(DDh)	USER P3	-32768 – 32767	1
UOY	B04h	222(DEh)	USER P4	-32768 – 32767	1
<i>U05</i>	B05h	223(DFh)	USER P5	-32768 – 32767	1
U08	B06h	224(E0h)	USER P6	-32768 – 32767	1
uon	B07h	225(E1h)	USER P7	-32768 – 32767	1
U08	B08h	226(E2h)	USER P8	-32768 – 32767	1
<i>U09</i>	B09h	227(E3h)	USER P9	-32768 – 32767	1
U 10	B0Ah	228(E4h)	USER P10	-32768 – 32767	1
UII	B0Bh		USER P11	-32768 – 32767	1
U 12	B0Ch		USER P12	-32768 – 32767	1
U 13	B0Dh		USER P13	-32768 – 32767	1
<i>U</i> 14	B0Eh		USER P14	-32768 – 32767	1
U IS	B0Fh		USER P15	-32768 – 32767	1
U 18	B10h		USER P16	-32768 – 32767	1
U 17	B11h		USER P17	-32768 – 32767	1
U 18	B12h		USER P18	-32768 – 32767	1
U 19	B13h		USER P19	-32768 – 32767	1
U20	B14h		USER P20	-32768 – 32767	1
U2 1	B15h		USER P21	-32768 – 32767	1
<i>U22</i>	B16h		USER P22	-32768 – 32767	1
<i>U23</i>	B17h		USER P23	-32768 – 32767	1
<i>U2</i> 4	B18h		USER P24	-32768 – 32767	1
<i>U25</i>	B19h		USER P25	-32768 – 32767	1
<i>U26</i>	B1Ah		USER P26	-32768 – 32767	1
บอก	B1Bh		USER P27	-32768 – 32767	1

You can change the setting of the functions indicated with _____ during operation. Stop the operation before changing other functions.

Function code	485 No.	Link No.	Name	Setting range	Min. unit
u28	B1Ch		USER P28	-32768 – 32767	1
U29	B1Dh		USER P29	-32768 – 32767	1
<i>U30</i>	B1Eh		USER P30	-32768 – 32767	1
U3 T	B1Fh		USER P31	-32768 – 32767	1
<i>U32</i>	B20h		USER P32	-32768 – 32767	1
<i>U33</i>	B21h		USER P33	-32768 – 32767	1
<i>U3</i> 4	B22h		USER P34	-32768 – 32767	1
<i>U35</i>	B23h		USER P35	-32768 – 32767	1
<i>U3</i> 8	B24h		USER P36	-32768 – 32767	1
<i>U3</i> 7	B25h		USER P37	-32768 – 32767	1
<i>U38</i>	B26h		USER P38	-32768 – 32767	1
<i>U39</i>	B27h		USER P39	-32768 – 32767	1
UYD	B28h		USER P40	-32768 – 32767	1
841	B29h		USER P41	-32768 – 32767	1
U42	B2Ah		USER P42	-32768 – 32767	1
<i>U</i> 43	B2Bh		USER P43	-32768 – 32767	1
844	B2Ch		USER P44	-32768 – 32767	1
<i>U</i> 45	B2Dh		USER P45	-32768 – 32767	1
848	B2Eh		USER P46	-32768 – 32767	1
UYT	B2Fh		USER P47	-32768 – 32767	1
<i>U</i> 48	B30h		USER P48	-32768 – 32767	1
825	B31h		USER P49	-32768 – 32767	1
USO	B32h		USER P50	-32768 – 32767	1
US I	B33h		USER P51	-32768 – 32767	1
U52	B34h		USER P52	-32768 – 32767	1
U53	B35h		USER P53	-32768 – 32767	1
USY	B36h		USER P54	-32768 – 32767	1
USS	B37h		USER P55	-32768 – 32767	1
US8	B38h		USER P56	-32768 – 32767	1
บรา	B39h		USER P57	-32768 – 32767	1
US8	B3Ah		USER P58	-32768 – 32767	1
US9	B3Bh		USER P59	-32768 – 32767	1
U60	B3Ch		USER P60	-32768 – 32767	1
U8 1	B3Dh	75(4Bh)	USER P61/U-Ai1	-32768 – 32767	1
U82	B3Eh	76(4Ch)	USER P62/U-Ai2	-32768 – 32767	1
U83	B3Fh	77(4Dh)	USER P63/U-Ai3	-32768 – 32767	1
884	B40h	78(4Eh)	USER P64/U-Ai4	-32768 – 32767	1

You can change the setting of the functions indicated with during operation. Stop the operation before changing other functions.

Option guides

Control option cards and support software

Category	Name	Туре	Switch with SW on the PCB.		Specifications	
Analog card	Synchronized operation card	Synchronized operation card OPC-VG7-SN		Synchronizing interface circuits for dancer control.		
	F/V converter	OPC-VG7-FV	'	F/V converter		
	Aio extension card	OPC-VG7-AIO		Extension card of Ai: 2 points + Ao 2 points.		
Ai extension card		OPC-VG7-AI		Extension card of Ai: 2 points.		
Digital card	Di interface card			16-bit Di of binary or 4-d	digit BCD + sign.	
(for 8-bit bus)					rque and the torque current reference.	
,	Dio extension card	OPC-VG7-DIO	OPC-VG7-DIO(A)	Extension of Di(4 bits) a	and Do(8 bits) for function selecting.	
				Dio option card for direct	landing control. Di \times 16 bit + Do \times 10 bit	
			OPC-VG7-DIO(B)	UPAC exclusive use		
	PG interface extension	OPC-VG7-PG	OPC-VG7-PG(SD)		oltage output PGs (A,B and Z-phase	
	card		OPC-VG7-PG(LD)	signals). Used for detec	ting motor speed, line speed, position	
			OPC-VG7-PG(PR)	reference and position of	detection.	
			OPC-VG7-PG(PD)			
		OPC-VG7-PGo	OPC-VG7-PGo(SD)		age output PGs (A,B and Z-phase	
			OPC-VG7-PGo(LD)	- ·	ting motor speed, line speed, position	
			OPC-VG7-PGo(PR)	reference and position detection.		
		OPC-VG7-PGo(PD)				
	T-Link interface card	OPC-VG7-TL		T-link interface card for FUJI MICREX-F series PLC.		
	High-speed serial card	OPC-VG7-SI		Used for multiwinding motor drive system.		
		OPC-VG7-SIU		Used for UPAC communications system.		
		OPC-VG7-SIR		Used for parallel motor drive systems with reactor.		
	RS-485 extension card	OPC-VG7-RS		I/F option card for UPAC communications and RS-485.		
	CC-Link interface card	OPC-VG7-CC				
	PG card for synchronous	OPC-VG7-PMPG OPC-VG7-PMPGo OPC-VG7-MG		+5V line drivers type	A, B + magnetic pole position	
	motor driving			Open collector type	(max. 4 bits).	
	Magnet orientation card				lled axis with the use of magnet sensor.	
	Resolver interface card	OPC-VG7-RE		Resolver interface card		
Digital card (for 16-bit bus)	User Programmable Application Card	OPC-VG7-UPAC		Technology card		
	SX bus interface card	OPC-VG7-SX *		SX bus interface card for FUJI MICREX-SX series PLC.		
Fieldbus	PROFIBUS-DP	OPC-VG7-PE)P *	Used as interface between	een KEYPAD and inverter unit.	
interface unit	DeviceNet	OPC-VG7-DE	EV *			
Separate	Synchronized operation unit	MCA-VG7-SN	J	Synchronizing interface circuits		
installation type	F/V converter	MCA-VG7-FV	/	F/V converter		
	Dancer controller	MCAII-PU		Dancer controller		
	PG signal switch	MCA-VG7-CF	PG	Switch between PG and	d NTC signal (2-signal switch)	
Loader	Inverter support loader	WPS-VG7-PC	CL	For Windows.		
Package	Tension control software	WPS-VG7-TE	N	For Windows.		
software	Dancer control software	WPS-VG7-DA		Supplied with inverter s	upport loader CD-ROM.	
	Position control software	WPS-VG7-PC	OS			
NOTE TI II	1 11 1 11 11	11070 ()		1070		

NOTE: The items marked with * cannot be used for the VG7S of standard version. The VG7S equipped with these items will be of special version. For details, please contact your FUJI sales representative.

Category	Name	Туре	Standard length	Max. length	Specifications
Cable	Extension cable for	CBIII-10R-2S	2m	2m	Connection cable between an inverter
	KEYPAD	CBIII-10R-1C	1m	5m	and the KEYPAD panel
		CBIII-10R-2C	2m	10m	
	RS-485 / RS232C converter with cable	NP4H-CNV	2m	2m	Converter with cable for a personal computer loader

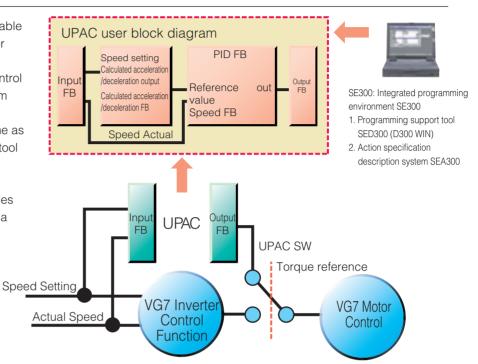
Maximum installable number of inverter built-in option cards (4)

Category	Maximum insta	allable number
Calegory	Example 1	Example 2
Analog card	1	0
Digital card (for 8-bit bus)	1	2
Digital card (for 16-bit bus)	1	1
Field bus interface unit	1	1

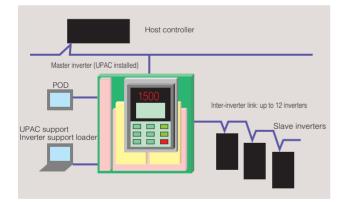
- Restrictions for installing built-in option cards

 (1) When you use OPC-VG7-PG for detecting motor speed, the input from the terminals (PA, PB) on the control PC board of the main unit is disabled.

 (2) When you install OPC-VG7-PMPG, you should select terminals according to the control method. The terminals (PA, PB) on the control PC board of the main unit are enabled if vector control is selected. The OPC-VG7-PMPG is enabled if vector control (for synchronous motors) is selected.
- (3) You cannot use OPC-VG7-TL (T-Link interface), OPC-VG7-SX (SX bus interface) and the field bus interface unit simultaneously. If these are used at the
- same time, the operation procedure error (Er6) will be issued.


 (4) You can select how to use OPC-VG7-DI, OPC-VG7-PG with the switch setting on the control PC board.

 You can install a pair of either OPC-VG7-DI, OPC-VG7-PG. If the setting of the switches selecting how to use them are the same, the operation procedure error (Er6) will be issued.


■UPAC

Optional user-programmable functions installed on the inverter

- The option of built-in user-programmable functions is referred to as UPAC (User Programmable Application Card).
- Users can alter part of the inverter control or control terminal functions to perform sequence control.
- Software supporting UPAC is the same as the integrated programming support tool SES300 of MICREX-SX (upgrade for UPAC is necessary on installation).
- High-speed serial card (option) enables master-slave configuration assigning a UPAC-installed inverter as a master.

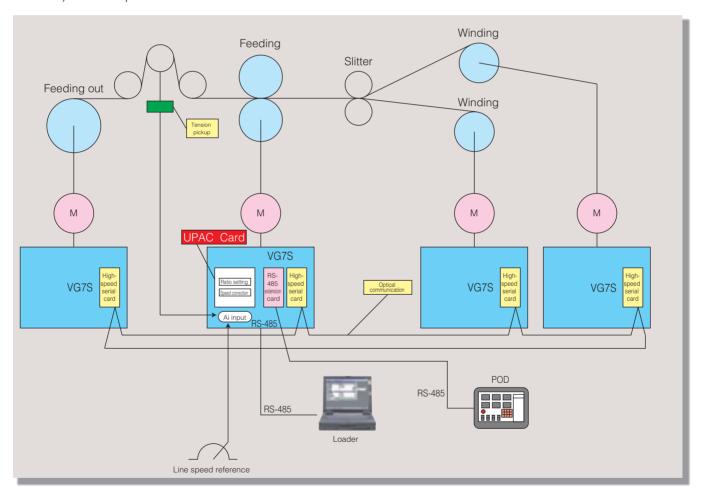
UPAC system application

Cable connection

An example of a System Configuration with UPAC

Below is an example of a winding up system with UPAC.

The inverter for a feed shaft is assigned as a master and UPAC is installed on it.

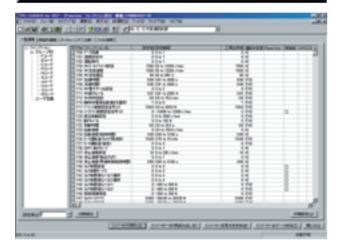

The entire system is controlled by UPAC by linking it with three other inverters via optical communications.

Speed control is applied to the feed shaft, tension control with tension pickups is applied to the feed-out shaft, and direct tension control without tension sensors is applied to the take-up shafts.

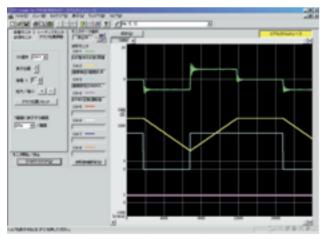
Tension control is stabilized with simultaneous acceleration/deceleration compensation and mechanical loss compensation.

A POD (Programmable Operation Display) is used for the entry of control data and control status display.

A loader for the personal computer is provided as a programming support tool with UPAC. Easy programming is realized by loader functions such as defining original circuits of users as FBs (Function Blocks) and multiple windows.



■ Inverter Support Loader

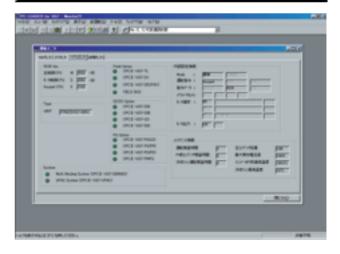

Complete Functions

- You can edit, compare and copy the function code data
- Operation monitoring, real-time/historical traces, fault monitoring and multiple monitoring are also available.
- Trial operation and tuning are available.
- You can monitor the operational status of up to 31 inverters by executing multiple-scan from your personal computer.

Function code list editing



Real-time trace



- You can choose the English or Japanese version on installation
- You can trace 100 points of data sampled at 1ms interval in the historical trace and use them for operation/fault analysis in combination with the trigger function.
- Operation is compatible with Windows95/98/NT/ XP/2000.

Trial operation screen

System monitor

NOTES

- Connectors are available for connecting to the inverter. Fuji's RS-485/232C converter cable (D-SUB 9 connector) is recommended.
- Though the minimum sampling interval for the real-time trace is 10ms, it may actually be longer due to the communication speed of your personal computer.
- Operation from the KEYPAD or the terminal block (external signal input) is disabled in loader trial operations. Operation from the loader is switched to the personal computer, KEYPAD or terminal block automatically for real operations.
- Product technology names related to Windows95, 98, NT, XP, and 2000 are trademarks or registered trademarks of Microsoft Corporation.

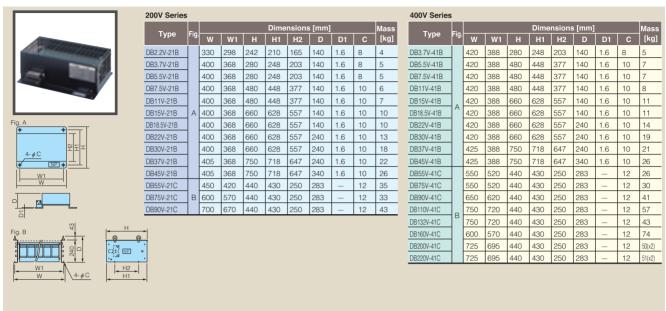


■ Braking resistor, braking unit (max. 150% torque, 10%ED)

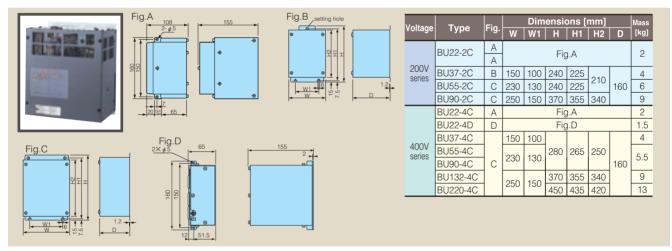
Power	Nominal		Braking unit		Braking resistor		Continuous braking (100% torque conversion value)		Repetitive braking	(100s or less cycle)		
supply voltage	applied motor [kW]	Inverter type	Туре	Q'ty	Туре	Ohmic value	Q'ty	Max. braking torque [%]	Braking time [s]	Discharging capability [kWs]	Duty cycle [%ED]	Average loss [kW]
	0.75	FRN0.75VG7S-2										
	1.5	FRN1.5VG7S-2				30Ω	1			16.5		0.165
	2.2	FRN2.2VG7S-2										
	3.7	FRN3.7VG7S-2	Built-in inverter		DB3.7V-21B	24Ω	1			27.75		0.2775
	5.5	FRN5.5VG7S-2			DB5.5V-21B	16Ω	1			41.25		0.4125
	7.5	FRN7.5VG7S-2			DB7.5V-21B	12Ω	1			56.25		0.5625
	11	FRN11VG7S-2			DB11V-21B	8Ω	1			82.5		0.825
200V	15	FRN15VG7S-2	- Danie-III IIIV	Built-in inverter		6Ω	1	150%	10s	112.5	10%ED	1.125
	18.5	FRN18.5VG7S-2			DB18.5V-21B	4.5Ω	1	13076	103	138.75	1076LD	1.3875
	22	FRN22VG7S-2			DB22V-21B	4Ω	1			165		1.65
	30	FRN30VG7S-2			DB30V-21B	2.5Ω	1			225		2.25
	37	FRN37VG7S-2				2.25Ω	1			277.5		2.775
	45	FRN45VG7S-2			DB45V-21B	2Ω	1			337.5		3.375
	55	FRN55VG7S-2			DB55V-21C	1.6Ω	1			412.5		4.125
	75	FRN75VG7S-2	BU55-2C	2	DB75V-21C	2.4/2 Ω	1			562.5		5.625
	90	FRN90VG7S-2	BU90-2C	2	DB90V-21C	2/2Ω	1			675		6.75
	3.7	FRN3.7VG7S-4			DB3.7V-41B	96Ω	1			27.75] [0.2775
	5.5	FRN5.5VG7S-4			DB5.5V-41B	64Ω	1			41.25] [0.4125
	7.5	FRN7.5VG7S-4			DB7.5V-41B	48Ω	1			56.25		0.5625
	11	FRN11VG7S-4				32Ω	1			82.5		0.825
	15	FRN15VG7S-4			DB15V-41B	24Ω	1			112.5		1.125
	18.5	FRN18.5VG7S-4			DB18.5V-41B	18Ω	1			138.75		1.3875
	22	FRN22VG7S-4	Built-in inv	ortor	DB22V-41B	16Ω	1			165		1.65
	30	FRN30VG7S-4	Duilt-III IIIv	renten	DB30V-41B	10Ω	1			225		2.25
	37	FRN37VG7S-4			DB37V-41B	9Ω	1			277.5		2.775
	45	FRN45VG7S-4			DB45V-41B	8Ω	1			337.5		3.375
	55	FRN55VG7S-4			DB55V-41C	6.5Ω	1			412.5		4.125
	75	FRN75VG7S-4			DB75V-41C	4.7Ω	1			562.5		5.625
400V	90	FRN90VG7S-4			DB90V-41C	3.9Ω	1	150%	10s	675	10%ED	6.75
	110	FRN110VG7S-4			DB110V-41C	3.2Ω	1			825		8.25
	132	FRN132VG7S-4	BU220-4C	1	DB132V-41C	2.6Ω	1			990		9.9
	160	FRN160VG7S-4	BU22U-4C		DB160V-41C	2.2Ω	1			1200		12.0
	200	FRN200VG7S-4			DB200V-41C	$3.5/2\Omega$	1			1500		15.0
	220	FRN220VG7S-4			DB220V-41C	3.2/2Ω	1			1650		16.5
	250	FRN250VG7S-4	BU220-4C	2	DB132V-41C	2.6 Ω	2			1875		18.8
	280	FRN280VG7S-4			DB160V-41C	2.2/2Ω	2			2100		21.0
	315	FRN315VG7S-4			DB160V-41C	2.2/2Ω	2			2363		23.6
	355	FRN355VG7S-4		3	DB132V-41C	2.6/3Ω	3			2663		26.6
	400	FRN400VG7S-4	BI 1220 40	3	DB132V-41C	2.6/3Ω	3			3000		30.0
	500	FRN500VG7S-4	BU220-4C	4	DB132V-41C	2.6/4Ω	4			3750		37.5
	630	FRN630VG7S-4		4	DB160V-41C	2.2/4Ω	4			4725		47.3

NOTES:

- The braking time and duty cycle [%ED] are calculated as the constant-torque braking used for deceleration as described below.
- Refer to the User's Manual for braking resistors other than those for 10%ED.


[Selection procedure]

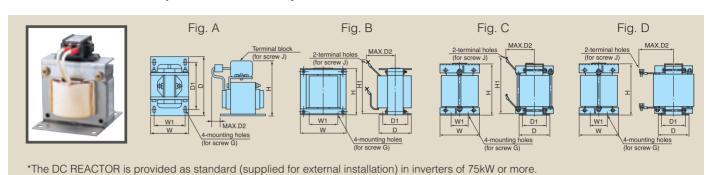
All three conditions listed below must be satisfied simultaneously.


- ① The maximum braking torque does not exceed the value shown on the table.
- 2 The energy discharged in the resistor for each braking (the area of the triangle shown in the above figure) does not exceed the discharging capability [kWs] on the table.
- 3 The average loss (energy discharged in the resistor divided by the braking interval) does not exceed the average loss [kW] shown on the table.

Options

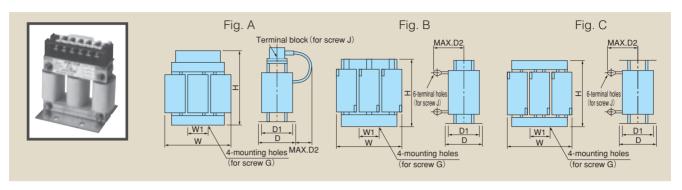
■Braking resistor

■Braking unit (BU □□ - □): G11 / P11



■Fan unit for braking unit (BU-F)

■DC REACTOR (DCR□-□□□)

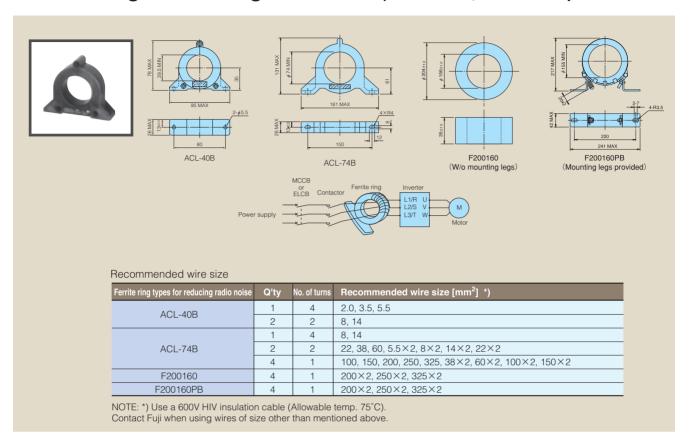

Nominal Itago	Inverter type	REACTOR	Dimensions [mm]

V. II	Nominal	Inverte	er type	REACTOR					Dimer	nsions	[mm]				Mass
Voltage	applied motor [kW]	CT use [150%]	VT use [110%]	type	Fig.	w	W1	D	D1	D2	G	Н	H1	J	[kg]
	0.75	FRN0.75VG7S-2	_	DCR2-0.75	А	66	56	90	72	20	M4 (5.2×8)	94	_	M4	1.4
	1.5	FRN1.5VG7S-2	FRN0.75VG7S-2	DCR2-1.5	А	66	56	90	72	20	M4 (5.2×8)	94	_	M4	1.6
	2.2	FRN2.2VG7S-2	FRN1.5VG7S-2	DCR2-2.2	Α	86	71	100	80	10	M5(6×9)	110	_	M4	1.8
	3.7	FRN3.7VG7S-2	FRN2.2VG7S-2	DCR2-3.7	А	86	71	100	80	20	M5(6×9)	110	_	M4	2.6
	5.5	FRN5.5VG7S-2	FRN3.7VG7S-2	DCR2-5.5	А	111	95	100	80	20	M6(7×11)	130	_	M5	3.6
	7.5	FRN7.5VG7S-2	FRN5.5VG7S-2	DCR2-7.5	А	111	95	100	80	23	M6(7×11)	130	_	M5	3.8
	11	FRN11VG7S-2	FRN7.5VG7S-2	DCR2-11	Α	111	95	100	80	24	M6(7×11)	137	_	M6	4.3
200V	15	FRN15VG7S-2	FRN11VG7S-2	DCR2-15	Α	146	124	120	96	15	M6(7×11)	180	_	M8	5.9
series	18.5	FRN18.5VG7S-2	FRN15VG7S-2	DCR2-18.5	Α	146	124	120	96	25	M6(7×11)	180	_	M8	7.4
	22	FRN22VG7S-2	FRN18.5VG7S-2	DCR2-22A	А	146	124	120	96	25	M6(7×11)	180	_	M8	7.5
	30	FRN30VG7S-2	FRN22VG7S-2	DCR2-30B	В	152	90	156	116	115	M6 (φ8)	130	190	M10	12
	37	FRN37VG7S-2	FRN30VG7S-2	DCR2-37B	В	171	110	151	110	115	M6 (φ8)	150	200	M10	14
	45	FRN45VG7S-2	FRN37VG7S-2	DCR2-45B	В	171	110	166	125	120	M6 (φ8)	150	200	M10	16
	55	FRN55VG7S-2	FRN45VG7S-2	DCR2-55B	С	190	160	131	90	100	M6 (φ8)	210	250	M12	16
	75	FRN75VG7S-2	FRN55VG7S-2	DCR2-75B	С	200	170	141	100	130	M8 (φ10)	210	270	M12	18
	90	FRN90VG7S-2	FRN75VG7S-2	DCR2-90B	С	180	150	151	110	162	M8 (φ10)	240	280	M12	20
	110	_	FRN90VG7S-2	DCR2-110B	С	190	160	161	120	172	M8 (φ10)	270	330	M12	25
	3.7	FRN3.7VG7S-4	_	DCR4-3.7	А	86	71	100	80	20	M5 (6×9)	110	_	M4	2.6
	5.5	FRN5.5VG7S-4	FRN3.7VG7S-4	DCR4-5.5	А	86	71	100	80	20	M5 (6×9)	110	_	M4	2.6
	7.5	FRN7.5VG7S-4	FRN5.5VG7S-4	DCR4-7.5	А	111	95	100	80	24	M6(7×11)	130	_	M5	4.2
	11	FRN11VG7S-4	FRN7.5VG7S-4	DCR4-11	А	111	95	100	80	24	M6(7×11)	130	_	M5	4.3
	15	FRN15VG7S-4	FRN11VG7S-4	DCR4-15	А	146	124	120	96	15	M6(7×11)	168	_	M5	5.9
	18.5	FRN18.5VG7S-4	FRN15VG7S-4	DCR4-18.5	Α	146	124	120	96	25	M6(7×11)	171	_	M6	7.2
	22	FRN22VG7S-4	FRN18.5VG7S-4	DCR4-22A	А	146	124	120	96	25	M6(7×11)	171	_	M6	7.2
	30	FRN30VG7S-4	FRN22VG7S-4	DCR4-30B	В	152	90	157	115	100	M6 (φ8)	130	190	M8	13
	_37	FRN37VG7S-4	FRN30VG7S-4	DCR4-37B	В	171	110	150	110	100	M6 (φ8)	150	200	M8	15
	45	FRN45VG7S-4	FRN37VG7S-4	DCR4-45B	В	171	110	165	125	110	M6 (φ8)	150	210	M8	18
	55	FRN55VG7S-4	FRN45VG7S-4	DCR4-55B	В	171	110	170	130	110	M6 (φ8)	150	210	M8	20
	_ 75	FRN75VG7S-4	FRN55VG7S-4	DCR4-75B	С	190	160	151	115	100	M8 (φ10)	240	270	M10	20
400V	90	FRN90VG7S-4	FRN75VG7S-4	DCR4-90B	С	190	160	161	125	142	M8(φ10)	250	280	M10	23
series	110	FRN110VG7S-4	FRN90VG7S-4	DCR4-110B	С	190	160	161	125	142	M8(φ10)	250	280	M10	25
	132	FRN132VG7S-4	FRN110VG7S-4	DCR4-132B	С	200	170	171	135	142	M8(φ10)	260	280	M10	28
	160	FRN160VG7S-4	FRN132VG7S-4	DCR4-160B	С	210	180	171	135	142	$M10(\phi12)$	290	320	M10	32
	200	FRN200VG7S-4	FRN160VG7S-4	DCR4-200B	С	210	180	171	135	162	$M10(\phi12)$	295	330	M10	35
	220	FRN220VG7S-4	FRN200VG7S-4	DCR4-220B	С	220	190	171	135	162	$M10(\phi12)$	300	350	M12	40
	250	FRN250VG7S-4	_	DCR4-280B	С	220	190	181	145	172	$M10(\phi12)$	320	370	M12	45
	280	FRN280VG7S-4	FRN220VG7S-4	DCR4-280B	С	220	190	181	145	172	$M10(\phi12)$	320	370	M12	45
	300	_	FRN250VG7S-4		D	220	190	181	145		M10(12×20)		_	M12	52
	315	FRN315VG7S-4	FRN280VG7S-4	DCR4-315B	D	220	190	181	145		M10(12×20)	320	_	M12	52
	355	FRN355VG7S-4	FRN315VG7S-4		D	220	190	181	145		M10(12×20)	320	_	M12	55
	400	FRN400VG7S-4	FRN355VG7S-4	DCR4-400B	D	240	210	181	145		M10(12×20)	340		M12	60
	500	FRN500VG7S-4	FRN400VG7S-4	DCR4-500B	D	260	225	181	145		M10(12×20)	340	_	M12	70
	630	FRN630VG7S-4	FRN500VG7S-4	DCR4-630B	D	300	245	211	170		M10(12×20)	390	_	M12	80
	710	_	FRN630VG7S-4	DCR4-710B	D	310	255	211	170	210	M10(12×20)	405	_	M12	88
The DO	REACTOR	RS in are	nrovided as star	ndard (separate	ly inetall	ad)									

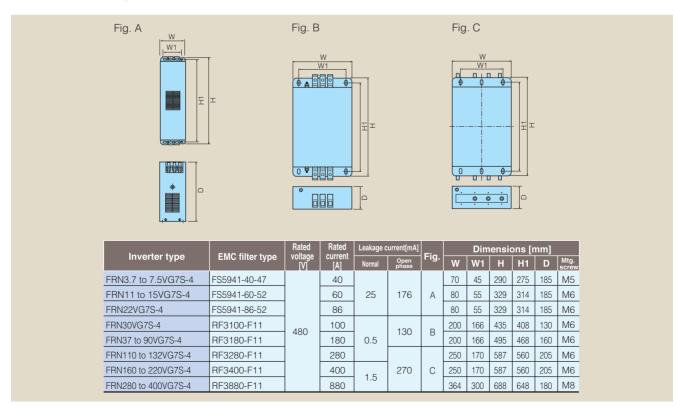
The DC REACTORS in _____ are provided as standard (separately installed).

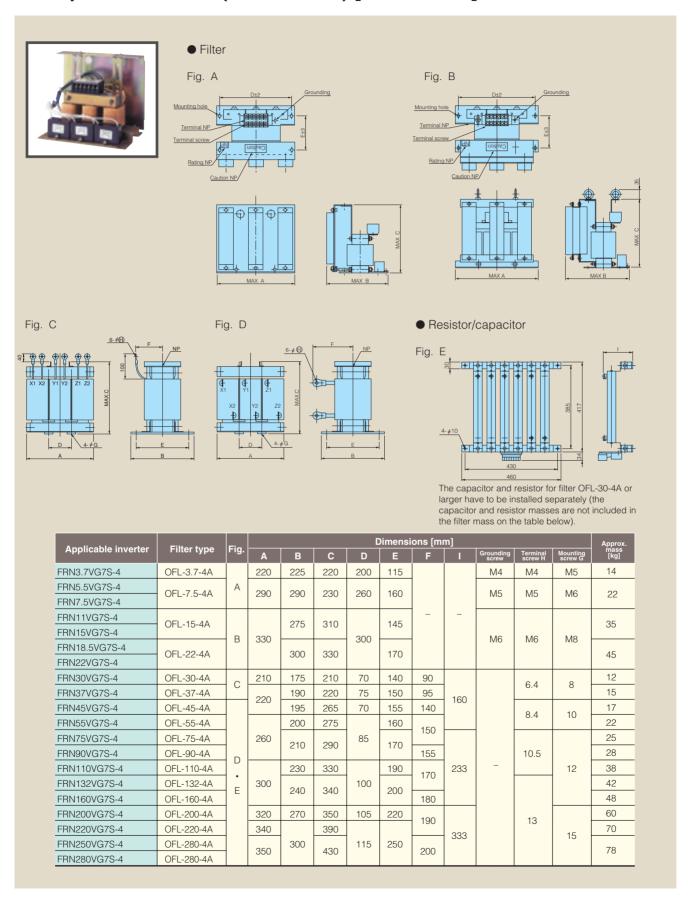
Note) When FRN55VG7S-2 and FRN55VG7S-4 are ordered as the CT specification, they do not come equipped with a DC reactor (DCR) as standard.

■ AC REACTOR (ACRo-ooo)



V 11	Nominal	Invert	er type	REACTOR				D	imens	ions [mm]			Mass
Voltage	applied motor [kW]	CT use [150%]	VT use [110%]	type	Fig.	w	W1	D	D1	D2	G	Н	J	[kg]
	0.75	FRN0.75VG7S-2	_	ACR2-0.75A		120	40	100	75	20	M5(6×10)	115	M4	1.9
	1.5	FRN1.5VG7S-2	FRN0.75VG7S-2	ACR2-1.5A		120	40	100	75	20	M5(6×10)	115	M4	2.0
	2.2	FRN2.2VG7S-2	FRN1.5VG7S-2	ACR2-2.2A	Α	120	40	100	75	20	M5(6×10)	115	M4	2.0
	3.7	FRN3.7VG7S-2	FRN2.2VG7S-2	ACR2-3.7A		125	40	100	75	25	M5 (6×10)	125	M4	2.4
	5.5	FRN5.5VG7S-2	FRN3.7VG7S-2	ACR2-5.5A		125	40	115	90	25	M5(6×10)	125	M4	3.1
	7.5	FRN7.5VG7S-2	FRN5.5VG7S-2	ACR2-7.5A		125	40	115	90	106	M5(6×10)	95	M5	3.1
	11	FRN11VG7S-2	FRN7.5VG7S-2	ACR2-11A		125	40	125	100	106	M5(6×10)	95	M6	3.7
200V	15	FRN15VG7S-2	FRN11VG7S-2	ACR2-15A		180	60	110	85	106	M6(7×11)	115	M6	4.8
series	18.5	FRN18.5VG7S-2	FRN15VG7S-2	ACR2-18.5A	В	180	60	110	85	109	M6(7×11)	115	M6	5.1
	22	FRN22VG7S-2	FRN18.5VG7S-2	ACR2-22A		180	60	110	85	109	M6(7×11)	115	M6	5.1
	30	FRN30VG7S-2	FRN22VG7S-2	ACR2-37		190	60	120	90	172	M6(7×11)	190	M8	11
	37	FRN37VG7S-2	FRN30VG7S-2	AOI IL-07		100		120		172	IVIO (7X11)	100	IVIO	' '
	45	FRN45VG7S-2	FRN37VG7S-2	ACR2-55		190	60	120	90	200	M6(7×11)	190	M12	13
	55	FRN55VG7S-2	FRN45VG7S-2	AOI IL-00		100		120	50	200	WIO (7XTT)	100	IVIIL	10
	75	FRN75VG7S-2	FRN55VG7S-2	ACR2-75	С	250	100	120	90	200	M8 (9×14)	250	M12	25
	90	FRN90VG7S-2	FRN75VG7S-2	ACR2-90		285	190	158	120	190	M10(12×20)	210	M12	26
	110	_	FRN90VG7S-2	ACR2-110		280	150	138	110	200	M8(10×20)	270	M12	30
	3.7	FRN3.7VG7S-4	_	ACR4-3.7A		125	40	100	75	106	M5(6×10)	95	M4	2.4
	5.5	FRN5.5VG7S-4	FRN3.7VG7S-4	ACR4-5.5A		125	40	115	90	106	M5(6×10)	95	M5	3.1
	7.5	FRN7.5VG7S-4	FRN5.5VG7S-4	ACR4-7.5A		125	40	115	90	106	M5 (6×10)	95	M5	3.7
	11	FRN11VG7S-4	FRN7.5VG7S-4	ACR4-11A		180	60	110	85	106	M6(7×11)	115	M6	4.3
	15	FRN15VG7S-4	FRN11VG7S-4	ACR4-15A	В									5.4
	18.5	FRN18.5VG7S-4	FRN15VG7S-4	ACR4-18.5A		180	60	110	85	106	M6(7×11)	137	M6	5.7
	22	FRN22VG7S-4	FRN18.5VG7S-4	ACR4-22A										5.9
	30	FRN30VG7S-4	FRN22VG7S-4	ACR4-37		190	60	120	90	172	M6(7×11)	190	M8	12
	37	FRN37VG7S-4	FRN30VG7S-4	A0114-07		100		120	50	176	IVIO (7×11)	100	IVIO	12
400V	45	FRN45VG7S-4	FRN37VG7S-4	ACR4-55		190	60	120	90	200	M6(7×11)	190	м10	14
series	55	FRN55VG7S-4	FRN45VG7S-4	710117 00				120			WIO (7711)	100	IVIIO	
	75	FRN75VG7S-4	FRN55VG7S-4	ACR4-75		190	60	126	90	157	M6(7×10)	190	M10	16
	90	FRN90VG7S-4	FRN75VG7S-4	ACR4-110		250	100	136	105	202	M8 (9.5×18)	245	M12	24
	110	FRN110VG7S-4	FRN90VG7S-4	A0114-1110		200	100	100	100	LUL	WIO (0.0/10)	240	IVIIL	
	132	FRN132VG7S-4	FRN110VG7S-4	ACR4-132	С	250	100	146	115	207	M8(10×16)	250	M12	32
	160	FRN160VG7S-4	FRN132VG7S-4											
	200	FRN200VG7S-4	FRN160VG7S-4	ACR4-220		320	120	150	110	240	M10(12×20)	300	M12	40
	220	FRN220VG7S-4	FRN200VG7S-4											
	250	FRN250VG7S-4	_	ACR4-280		380	130	150	110	260	M10(12×20)	300	M12	52
	280	FRN280VG7S-4	FRN220VG7S-4	7.0114-2.00		300	100	100	110	200	IVITO (TEAEU)	300	IVIIZ	٥٢


Note) This is necessary only in operation which requires specially stable power supply such as operation using DC bus connection (PN connection). Use a DC reactor (DCR) for countermeasure for harmonics.


■ Ferrite ring for reducing radio noise (ACL-40B, ACL-74B)

■ EMC compliant filter (RF3000-F11) [400V series]

■ Output circuit filter (OFL-□□-4A) [400V series]

■ Power regenerative PWM converter, RHC series

Features

Possible to reduce power supply facility capacity

Its power-factor control realizes the same phase current as the power-supply phase-voltage. The equipment, thus, can be operated with the power-factor of almost "1." This makes it possible to reduce the power transformer capacity and downsize the other devices, compared with those required without the converter.

Upgraded braking performance

Regenerated energy occurring at highly frequent accelerating and decelerating operation and elevating machine operation is entirely returned to power supply side.

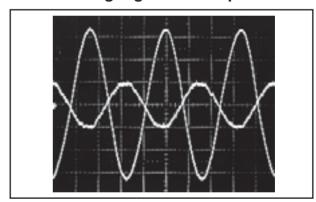
Thus, energy saving during regenerative operation is possible.

As the current waveform is sinusoidal during regenerative operation, no troubles are caused to the power supply system.

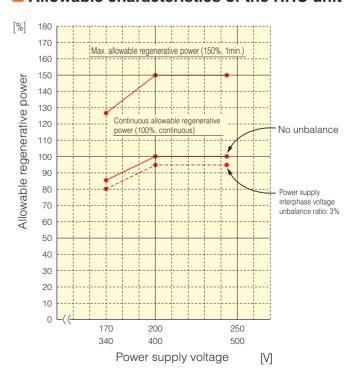
Rated continuous regeneration: 100%
Rated regeneration for 1 min 150% (CT use) 120% (VT use)

Enhanced maintenance/protective functions

- •Failure can be easily analyzed with the trace back function (option).
- ① The past 10 alarms can be displayed with the 7-segment LEDs.
 - This helps you analyze the alarm causes and take countermeasures.
- ② Even if the wiring on phase sequence at power supply side is wrong, correction is automatically made, so that normal operation is assured.
- ③ When momentary power failure occurs, the converter shuts out the gate to enable continuous operation after recovery.
- The converter can issue warning signals like overload, heat sink overheating, or the end of service life prior to converter tripping.


Enhanced network support

•The converter can be connected to MICREX-SX, F series and CC-Link master devices (using option).


The RS-485 interface is provided as standard.

Example of waveform at power supply side during regenerative operation

Allowable characteristics of the RHC unit

Standard specifications • Common specifications

Standard specifictions

●200V series

	Ite	em					Standa	ard specifi	cation							
			200V ser	ies												
ı	ype RHC□	L L -2C	7.5	11	15	18.5	22	30	37	45	55	75	90			
	Applicable	inverter capacity[kW]	7.5	11	15	18.5	22	30	37	45	55	75	90			
		Continuous capacity[kW]	8.8	13	18	22	26	36	44	53	65	88	103			
	Output	Overload rating	150% of	rated curre	nt for 1min											
CT use	Voltage 200V		DC320 to	355V (Va	riable with	input powe	r supply vo	ltage) (*3)								
		Rated input current	27	40	55	67	80	109	135	164	200	267	321			
	Required power supply capacity[kVA]		9.5	14	19	24	29	38	47	56	69	93	111			
	Carrier fre	quency	Standard 15kHz Standard 10kHz													
	Applicable	inverter capacity[kW]	11	15	18.5	22	30 37 45 55		55	75	90	110				
		Continuous capacity[kW]	13	18	22	26	36	44	53	65	88	103	126			
	Output	Overload capability	120% of	rated curre	nt for 1min											
VT use	Output	Voltage 200V	DC320 to	355V (Va	riable with	input powe	r supply vo	ltage) (*3)								
		Rated input current	40	55	67	80	109	135	164	200	267	321	392			
	Required po	wer supply capacity[kVA]	14	19	24	29	38	47	56	69	93	111	137			
	Carrier frequency		Standard	10kHz								Standard	6kHz			
Power	Number of p	hase/Voltage/Frequency	3-phase	3-wire, 200	to 220V 5	0Hz, 220	to 230V 50	Hz(*1), 20	0 to 230V	60Hz						
supply voltage	Voltage/Fi	equency variation	Voltage+	10 to -15%	6, Frequen	cy ±5%, Vo	oltage unba	alance: 3%	or less							

●400V series

													-	.m.												
	Item											Sta	anda	rd sp	ecifi	catio	n									
т.	DUC		400	V ser	ies																					
12	ype RHC□	□ □-4 0	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630	710B	800B
	Applicable	inverter capacity[kW]	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630	710	800
		Continuous capacity[kW]	8.8	13	18	22	26	36	44	53	65	88	103	126	150	182	227	247	314	353	400	448	560	705	795	896
OT	Output	Overload rating	150°	% of	rated	curre	ent fo	r 1mi	in.																	
CT use		Voltage 400V	DC6	640 to	710	V (Va	ariabl	e with	ı inpı	ıt pov	ver s	upply	volta	age)	(*3)											
	Required pov	wer supply capacity(kVA)	9.5	14	19	24	29	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	610	762	858	967
	Carrier free	quency	Star	ndard	15kł	Ηz						Star	ndard	10kH	Ηz									Stan	dard 6	3kHz
	Applicable	inverter capacity[kW]	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500				
		Continuous capacity[kW]	13	18	22	26	36	44	53	65	88	103	126	150	182	227	247	314	353	400	448	560				
	Output	Overload capability	120°	% of	rated	curre	ent fo	r 1mi	n.																	
VT use		Voltage 400V	DC6	640 to	710	V (Va	ariabl	e with	ı inpı	ıt pov	ver s	upply	volta	age)	(*3)											
	Required power supply capacity(kVA)		14	19	24	29	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	610				
	Carrier free	quency	Star	dard	10kł	Ηz						Star	ndard	6kHz	Z											
Power	Number of p	hase/Voltage/Frequency	3-ph	ase	3-wire	e, 38	0 to 4	40V	50Hz	:, 38	0 to 4	460V	60Hz	z(*2)												
supply voltage	Voltage/Frequency variation		Volt	age+	15 to	-109	6, Fre	eque	ncy ±	5%, \	/olta	ge un	balar	nce: 2	2% or	less	(*4)									

^{(*1) 220} to 230V/50Hz model available on request.

Common specifications

	Item	specification
	Control method	AVR constant control with DC ACR minor
	Running	Rectification starts with power ON after connected. Pressurization starts with the running signal (RUN-CM
	Hulling	short-circuit or running command from communications). Then, preparation for operation is completed.
	Running status signal	Running, driving, regenerating, operation ready, alarm relay output (for any fault), etc.
Control	CT/VT switching	Selecting from CT: Overload rating 150% (1min.) and VT: Overload rating 120% (1min.)
	Carrier frequency	Fixed to high carrier frequency
	Input power factor	Above 0.99
	Input high-frequency current	According to the guideline for suppressing harmonics issued by the Ministry of Economy, Trade and Industry, the converter factor (Ki) can be set to 0.
	Restart mode after momentary power failure	Shields the gate when the voltage level reaches undervoltage level if momentary power failure occurs, and the converter can automatically restart after the power recovers.
	Power limit control	Controls the power not to exceed the preset limit value.
		AC fuse blown, AC overvoltage, AC undervoltage, AC overcurrent, AC input current error, Input phase loss,
	Alarm display	Synchronous power supply frequency error, DC fuse blown, DC overvoltage, DC undervoltage, Charge circuit error,
	(protective functions)	Heat sink overheat, External alarm, Converter overheat, Overload, Memory error, Keypad communication error,
		CPU error, Network device error, Operation procedure error, A/D converter error, Optical network error, IPM error
Display	Alarm history	Records and displays the last 10 alarms.
,,	Alaministory	The detailed information of the trip cause for the previous alarm is stored and displayed.
	Monitor	Displays input power, input effective current, input effective voltage, DC intermediate current and power supply frequency.
	Load factor	The load rate can be measured by using the keypad.
	Display language	Function codes can be set or referred to in Japanese, English and Chinese (3 languages).
	Charge lamp	Lights when the main circuit condenser is charged.

^(*2) The tap in the converter must be switched when the power supply voltage is 380 to 398V/50Hz or 380 to 430V/60Hz. The capacity must be reduced when the power supply voltage is less than 400V.

^(*3) The output voltage is 320/640 VDC, 343/686 VDC, 355/710 VDC when the power supply voltage is 200/400V, 220/440V and 230/460V, respectively.

^(*4) Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] \times 67

Terminal Functions

■Terminal Functions

Division	Symbol	Terminal name	Functions
	L1/R, L2/S, L3/T	Power input	Connects with a three-phase power supply via the dedicated reactor.
Main circuit	P (+), N (-)	Converter output	Connects with the inverter power supply input terminal P (+), N (-).
Maiii Circuit	E (G)	Grounding	Ground terminal for inverter chassis (housing).
	R0, T0	Auxiliary control power supply	
Voltogo	R1, S1, T1	Synchronous power supply	Voltage detection terminals for controlling the inside of the converter. These are
Voltage detection		input for voltage detection	connected with the power supply side of the dedicated reactor and filter.
detection	R2, T2	Control monitor input	Terminals that connect with the circuit for detecting disconnection caused by blown AC fuse.
	RUN	RUN command	The converter starts running when this command is ON between RUN and CM, and stops when OFF.
	RST	Alarm reset command	In case of alarm stop, eliminate the cause and turn on this command between RST
			and CM. The protective function is disabled and the alarm state is released.
Input signal	X1	General-purpose	0: External fault [THR], 1: Current limit cancel [LMT-CCL], 2: 73 answerback
		transistor input	[73ANS], 3: Current limit switching [1-LIM], 4: Optional DI [OPY-DI]
	CM	Digital input common	Common terminal for digital input signals.
	PLC	PLC signal power supply	Connects with the PLC output signal power supply. (Rated voltage: 24V (22 to 27V) DC)
	30A, 30B, 30C	Alarm relay output	Outputs a signal when a protective function is activated to stop the converter.
		(for any fault)	(Contact at 1C, Circuit between 30A and 30C comes ON when an alarm occurs) (Contact capacity: 250V AC, max 50mA.)
	Y1, Y2, Y3,	General-purpose	0: Inverter running [RUN] 1: Operation ready output [RDY] 2: Power supply current limiting [IL]
	Y11 to Y18	transistor output	3: Lifetime alarm [LIFE] 4: Cooling fin overload [PRE-OH] 5: Overload alarm [PRE-OL]
			6: Driving [DRV] 7: Regenerating [REG] 8: Current limit alarm [CUR] 9: Under restart [U-RES]
			10: Power supply frequency synchronizing [SY-HZ] 11: Alarm indication [AL1]
Output	CME	Digital output common	12: Alarm indication 2 [AL2] 13: Alarm indication 4 [AL4] 14: Optional DO [OPT-DO]
signal	Y5A, Y5C	Relay output	* With OPC-VG-AO option, 8-point expanded functions become available (DI function is not available.)
	A01, A04, A05	General-purpose	0: Input power [PWR] 1: Input current rms [I-AC] 2: Input voltage rms [V-AC] 3: DC link circuit voltage [V-DC]
		analog output	4: Power supply frequency [FREQ] 5: +10V output test [P10] -10V output test [N10]
			* With OPC-VG-AO option, 2-point expanded functions become available (Ai function is not usable.)
	M	Analog output common	Common terminal for analog input signals.
	73A, 73C	Charging resistance input relay output	Control output for the input relay of the external charging resistance (73)

Communications Specifications

	Item		Specifications									
	General specifications for communicat	ion	Enables to show running information and running status, and to monitor the function code (polling), and to control (selecting) RUN, RST, and X1. * No function code can be written.									
	RS-485 (standard)		Communicates with the PC or PLC (Fuji protocol and RTU are supported.)									
	T-Link (optional)		OPC-VG7-TL option allows T-Link communication with the T-Link module in the MICREX-F or MICREX-SX.									
Communi-	SX bus (optional)		OPC-VG7-SX option allows connection between SX bus and MICREX-SX.									
	CC-Link (optional)		OPC-VG7-SX option allows connection with the CC link master device.									
cation specification	PROFIBUS-DP (optional)		These options will be supported soon.									
Specification	DeviceNet (optional)											
	Trace back (optional)	Hardware	OPC-RHC-TR option allows trace-back of the converter operation status data.									
			The software (WPS-LD-TR) is required.									
L		Software	WPS-RHC-TR software allows collecting the trace back data on the PC.									
	Optical communications (optional)		OPC-VGS-SI option allows sharing the load of the concurrent multitasking system.									
			Therefore, the capacity of up to 2400kW can be supported.									

Function Settings

_ uniot	ion octings
Function code	Name
F00	Data protection
F01	High-frequency filter selection
F02	Restart mode after momentary power failure
	(operation selection)
F03	Current rating switching
F04	LED monitor (Display selection)
F05	LCD monitor (Display selection)
F06	LCD monitor (Language selection)
F07	LCD monitor (Contrast adjusting)
F08	Carrier frequency
E01	X1 function selection
E02 to 13	Y1, Y2, Y3, Y5, Y11 to 18 function selection
E14	I/O function normally open/normally closed
E15	RHC overload early warning level
E16	Cooling fan ON-OFF control
E17	Output while limiting the current
	(hysteresis width)
E18 to 20	A01, A04, A05 function selection
E21 to 23	A01, A04, A05 gain setting
E24 to 26	A01, A04, A05 bias setting
E27	A01 to 5 filter setting
S01	Operation method
S02, 03	Power supply current limit (drive/ control)
H01	Station address
H02	Communication error processing
H03	Timer operation time
H04	Baud rate
H05	Data length selection
H06	Parity check
H07	Stop bit check
H08	No-response error detection time
H09	Response interval
H10	Protocol selection
H11	TL transmission format
H12	Parallel system
H13	Number of slave stations in parallel system
H14	Alarm data deletion
H15, 16	Power supply current limit (drive 1/2)
H17, 18	Power supply current limit (control 1/2)
H19, 20	Current limit early warning (level/ timer)
M09	Power supply frequency
M10	Input power
M11	Effective input current
M12	Effective input voltage
M13	Run command
M14	Running status
M15	Output terminals Y1 to Y18

Protective Functions

Item	LED monitor	Function	Remarks
AC fuse blown	ACF	When the AC fuse is blown (only R and T phases), the converter stops running.	
AC overvoltage	AOV	The converter stops running on detection of AC overvoltage.	
AC undervoltage	ALV	The converter stops running on detection of AC undervoltage.	
AC overcurrent	AOC	The converter stops running if the input current peak value exceeds	
		the overcurrent level.	
AC input current error	ACE	The converter stops running on detection of excessive deviation between AC input and ACR.	
Input phase loss	LPV	The converter stops running if the input phase loss occurs in the power supply.	
Synchronous power	FrE	The power supply frequency is checked after "73" is input. If a frequency error is detected, the converter	
supply frequency error		stops running. Error during converter running (such as momentary power failure) triggers no alarm.	
DC fuse blown	dCF	The converter stops running if the AC fuse is blown (P side).	Above 18.5kW
DC overvoltage	dOV	The converter stops running on detection of DC overvoltage.	200V series: Above 400V±3V
		If the power failure takes long and the control power goes out,	400V series: Above 800V±5V
		the converter is automatically reset.	
DC undervoltage	dLV	The converter stops running on detection of DC undervoltage.	200V series: Runs at 185V and restarts at 208V
		If the power failure takes long and the control power goes out,	400V series: Runs at 371V and restarts at 417V
		the converter is automatically reset.	
Charge circuit error	PbF	When the charge circuit error is detected while the answerback signal	Condition: X1 "73 Answerback" is selected.
		usage at input of 73 is specified, the converter stops running.	
Cooling fin overheat	OH1	The converter stops running if the cooling fin overheat is detected.	
External alarm	OH2	The converter stops running if an external signal (THR) is input.	Condition: X1 "External alarm" is selected.
Converter internal overheat	OH3	When overheat is detected in the inverter, the converter stops running.	
Converter overload	OLU	When the output current exceeds the overload characteristic of the	Start point: 105%, 150% 1 minute
		inverse time characteristic, the converter stops running.	
Memory error	Er1	When a fault such as "write error" occurs in the memory (checksum values in	
		EEPROM and RAM do not match), the converter stops running.	
Keypad communication	Er2	Activated if an error is detected during initial communication.	
error		The converter continues operating.	
CPU error	Er3	Activated if an error is detected in the CPU.	
Network device error	Er4	The converter stops running if a fatal error is detected in the master	Applicable to T-Link,
		network device (including unconnected power supply).	SX and CC-Link
Operation procedure error	Er6	When an error is detected in operation procedure, the converter stops running.	
A/D converter error	Er8	When an error is detected in the A/D converter circuit, the converter stops running.	
Optical network error	Erb	The converter stops running if the optical cable is disconnected or a	
		fatal error is detected in an optical device (optional)	
IPM error	IPE	Activated if IPM self-shutoff function is triggered by excessive current or overheat.	Less than 15kW

Structure and environment

ŀ	tem	Structure, environment and standard
	Structure	Installed in the panel and cooled by external device
	Protective structure	IP00
Structure	Cooling system	Forced air cooling
specifications	Installation method	Vertical installation
	Color	Same color as inverter FRENIC 5000VG7S series (Munsell 5Y3/0.5 half-burnished)
	Maintainability	Structure designed for easy parts change
	Location	Indoor, location free from corrosive gas, flammable gas, dust and direct light
	Ambient temperature	-10 to 50℃
	Humidity	5 to 95%RH Without condensing
Environment	Altitude	Less than 3000m (output reduction may occur if the altitude is in the range between 1001 and 3000m)
	Vibration	2 to 9Hz: Amplitude=3mm, 9 to 20Hz: 9.8m/s², 20 to 55Hz: 2m/s²
		(9 to 55Hz: 2m/s² is used if the power is higher than 90kW.)
	Storage temperature	-20 to 55℃
	Storage humidity	5 to 95%RH

CT use

Equipment Configuration List

SC-N11

SC-N12

SC-N3

CU160-4C

CU200-4C

CU220-4C

SC-N14

SC-N16 1

SC-N11 3

(GRZG400 1Ω)

GRZG400 1Ω

(2 parallels)

RHC160-4C

RHC200-4C

RHC220-4C

RHC280-4C

RHC315-4C

RHC355-4C

RHC400-4C

RHC500-4C

160

200

220

280

315

355

400 500

	Nominal	PWM	Charging circu	uit	Contactor	r for			Charging cir	cui	t box ^(*1)		Reactor fo	or	Resistance		Reacto	r	Capacit	or	Filterir circui
Voltage		converter	contactor		powersou	urce			Charging resistan	се	Fuse		pressurizi	ng	for filter		for filte		for filte		cırcı
	motor(kw)	type	(73)	Q'ty	(52)	Q'ty	(CU)	Q'ty	(R0)	Q'ty	(F)	Q't	(Lr)	Q'ty	(Rf)	Q'ty	(Lf)	Q'ty	(Cf)	Q'ty	(6F)
	7.5	RHC7.5-2C	SC-5-1	1		Т	CU7.5-2C	1	(80W 7.5Ω)	(3)	(CR2LS-50/UL)	(2)	LR2-7.5C	1	GRZG80 0.42Ω	3	LFC2-7.5C	1	CF2-7.5C	1	
	11	RHC11-2C	SC-N1	1			CU11-2C	1	(HF5C5504)		(CR2LS-75/UL)	(2)	LR2-15C	1	GRZG150 0.2Ω	3	LFC2-15C	1	CF2-15C	1	
	15	RHC15-2C	SC-N2	1			CU15-2C	1			(CR2LS-100/UL)	(2)									
	18.5	RHC18.5-2C	SC-N3	1			CU18.5-2C	1	(GRZG120 2Ω)	(3)			LR2-22C	1	GRZG200 0.13Ω	3	LFC2-22C	1	CF2-22C	1	
200V	22	RHC22-2C					CU22-2C	1			(CR2L-150/UL)	(2)									
eries	30	RHC30-2C	SC-N4	1			CU30-2C	1			(CR2L-200/UL)	(2)	LR2-37C	1	GRZG400 0.1Ω	3	LFC2-37C	1	CF2-37C	1	
	37	RHC37-2C	SC-N5	1			CU45-2C	1			(CR2L-260/UL)	(2)									
	45	RHC45-2C	SC-N7	1									LR2-55C	1]		LFC2-55C	1	CF2-55C	1	
	55	RHC55-2C	SC-N8	1			CU55-2C	1			(CR2L-400/UL)	(2)									
	75	RHC75-2C	SC-N11	1			CU75-2C	1					LR2-75C	1			LFC2-75C	1	CF2-75C	1	
	90	RHC90-2C]				CU90-2C	1	(GRZG400 1Ω)	(3)	(A50P600-4)	(2)	LR2-110C	1	GRZG400 0.12Ω	6	LFC2-110C	1	CF2-110C	1	
															(2 parallels)						
	7.5	RHC7.5-4C	SC-05	1		Т	CU7.5-4C	1	(TK50B 30ΩJ)	(3)	(CR6L-30/UL)	(2)	LR4-7.5C	1	GRZG80 1.74Ω	3	LFC4-7.5C	1	CF4-7.5C	1	
	11	RHC11-4C	SC-4-0	1			CU15-4C	1	(HF5B0416)		(CR6L-50/UL)	(2)	LR4-15C	1	GRZG150 0.79Ω	3	LFC4-15C	1	CF4-15C	1	
	15	RHC15-4C	SC-5-1	1																	
	18.5	RHC18.5-4C	SC-N1	1			CU18.5-4C	1	(80W 7.5Ω)	(3)			LR4-22C	1	GRZG200 0.53Ω	3	LFC4-22C	1	CF4-22C	1	
	22	RHC22-4C					CU22-4C	1	(HF5C0416)		(CR6L-75/UL)	(2)									
	30	RHC30-4C	SC-N2	1			CU30-4C	1			(CR6L-100/UL)	(2)	LR4-37C	1	GRZG400 0.38Ω	3	LFC4-37C	1	CF4-37C	1	
	37	RHC37-4C	SC-N2S	1			CU45-4C	1			(CR6L-150/UL)	(2)									
	45	RHC45-4C	SC-N3	1									LR4-55C	1	GRZG400 0.26Ω	3	LFC4-55C	1	CF4-55C	1	
	55	RHC55-4C	SC-N4	1			CU55-4C	1			(CR6L-200/UL)	(2)									
	75	RHC75-4C	SC-N5	1			CU75-4C	1					LR4-75C	1	GRZG400 0.38Ω	3	LFC4-75C	1	CF4-75C	1	
100V series	90	RHC90-4C	SC-N7	1			CU90-4C	1			(CR6L-300/UL)	(2)	LR4-110C	1	GRZG400 0.53Ω	6	LFC4-110C	1	CF4-110C	1	
ciics	110	RHC110-4C	SC-N8	1			CU110-4C	1	(GRZG120 2Ω)	(3)				L	(2 parallels)						
	132	RHC132-4C					CU132-4C	1			(A50P400-4)	(2)	LR4-160C	1	RF4-160C	1	LFC4-160C	1	CF4-160C	1	
										1		1		1				1			

(A50P600-4)

(A70QS800-4)

A70P1600-4TA

6 A70QS800-4

LR4-220C

LR4-280C

LR4-315C

LR4-355C

LR4-400C

LR4-500C

RF4-220C

RF4-280C

1 RF4-315C

1 RF4-355C

1 RF4-400C

1 RF4-500C

1 LFC4-220C

1 LFC4-280C

1 LFC4-315C

1 LFC4-355C

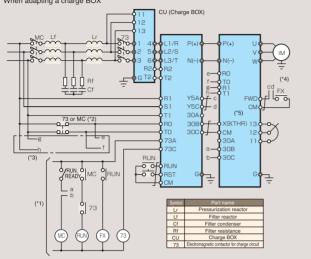
1 LFC4-400C

1 LFC4-500C 1 CF4-500C

CF4-220C

CF4-280C

1 CF4-315C


1 CF4-355C 1 CF4-400C 1 SC-N4

1

	630	RHC630-4C			SC-N12 3					A70P2000-4		2 LR4-630	С	1 RF4-630C		1 LFC4-6	30C	1 CF4-630	C	1(°2) SC-N7	1
	710	RHC710B-4C	SC-N4	1	1					HF5G2655		2 LR4-710	С	1 RF4-710C		1 LFC4-7	'10C	1 CF4-710	C	1 SC-N8	1
	800	RHC800B-4C			SC-N14 3							LR4-800	С	1 RF4-800C		1 LFC4-8	800C	1 CF4-800	C	1	
VT use)																				
Voltore	Nominal	PWM	Reactor for pressur	izing	Reactor for fi	Iter	Capacitor fo	r filter	Resistan	ce for filte	ŕ	Charging resista	nce	Fuse		Charging circuit con	actor	Contactor for powers	ource	Filtering circuit con	tactor
Voltage	applied motor[kw]	converter type	(Lr)	Q'ty	(Lf)	Q'ty	(Cf)	Q't	(R	f)	Q'ty	(R0)	Q'ty	(F)	Q'ty	(73)	Q'ty	(52)	Q'ty	(6F)	Q'ty
	11	RHC7.5-2C	LR2-15C	1	LFC2-15C	1	CF2-15C	1	GRZG150).2Ω	3	80W7.5Ω	3	CR2LS-50/UL	2	SC-N1	1		П		Т
	15	RHC11-2C										(HF5C5504)		CR2LS-75/UL	2	SC-N2	1				
	18.5	RHC15-2C	LR2-22C	1	LFC2-22C	1	CF2-22C	1	GRZG200 ().13Ω	3			CR2LS-100/UL	2	SC-N3	1				
	22	RHC18.5-2C		Ш		L					L	GRZG120 2Ω	3								
200V	30	RHC22-2C	LR2-37C	1	LFC2-37C	1	CF2-37C	1	GRZG400 ().1Ω	3			CR2L-150/UL	2	SC-N4	1				
series	37	RHC30-2C		Ш		\perp								CR2L-200/UL	2	SC-N5	1	_	$\left -\right $	_	
	45	RHC37-2C	LR2-55C	1	LFC2-55C	1	CF2-55C	1	GRZG400 ().1Ω	3			CR2L-260/UL	2	SC-N7	1				
	55	RHC45-2C		Ц		╀		_			L				퇶	SC-N8	1				
	75	RHC55-2C	LR2-75C	-	LFC2-75C	1	CF2-75C	1	GRZG400 ().1Ω	3			CR2L-400/UL	2	SC-N11	1				
	90	RHC75-2C	LR2-110C	1	LFC2-110C	1	CF2-110C	1	GRZG400 0.1	2Ω (2 parallels)	6		L		퇶		L				
	110	RHC90-2C		Ц		╀		_			L	GRZG4001Ω	-	A50P600-4	+	SC-N12	1		Ш		╄
	11	RHC7.5-4C	LR4-15C	1	LFC4-15C	1	CF4-15C	1	GRZG150 ().79Ω	3	TK50B 30ΩJ (HF5B0416)	3	CR6L-30/UL	-	SC-4-0	1				
	15	RHC11-4C		Н		\perp		_			┡	(ПГЭВО410)		CR6L-50/UL	2	SC-5-1	1				
	18.5	RHC15-4C	LR4-22C	1	LFC4-22C	1	CF4-22C	1	GRZG200 ().53Ω	3		L	-		SC-N1	1				
	22	RHC18.5-4C		Н		+		_			-	80W 7.5Ω (HF5C5504)	3		-		₽				
	30	RHC22-4C	LR4-37C	1	LFC4-37C	1	CF4-37C	1	GRZG400 ().38Ω	3	(111 303304)		CR6L-75/UL	-	SC-N2	1				
	37	RHC30-4C		Н		+					ļ.			CR6L-100/UL	-	SC-N2S	1				
	45	RHC37-4C	LR4-55C	1	LFC4-55C	1	CF4-55C	1	GRZG400 ().26Ω	3			CR6L-150/UL	2	SC-N3	1				
	55	RHC45-4C		H	. = 0 . = - 0	+		+			Ł				Ł	SC-N4	1	_	_	_	-
	75	RHC55-4C	LR4-75C	\vdash	LFC4-75C	+	CF4-75C	1	GRZG400 (3			CR6L-200/UL	2	SC-N5	1				
400V series	90	RHC75-4C	LR4-110C	1	LFC4-110C	ו	CF4-110C	1	GRZG400 0.5	3Ω (2 parallels)	6			OB01 000##	+	SC-N7	1				
	110	RHC90-4C	LD4 160C		1.504.4600	+	CF4-160C	- 1	DE4 160C		1	CD7C100.00	3	CR6L-300/UL	2	SC-N8	ľ				
	132	RHC110-4C RHC132-4C	LR4-160C	ľ	LFC4-160C	'	CF4-160C	- ['	RF4-160C		ľ	GRZG120 2Ω	3	A50P400-4	_	SC-N11	1				
	160 200	RHC160-4C	LR4-220C	1	LFC4-220C	1	CF4-220C	1	RF4-220C		1			A50P400-4 A50P600-4	+	SC-N12	1				
	220	RHC200-4C	LN4-2200	ľ	LFG4-220G	'	GF4-220C	- ['	NF4-2200		ľ	GRZG400 1Ω	3	-	<u>′</u>	30-1112	ľ				
	280	RHC220-4C	LR4-280C	1	LFC4-280C	1	CF4-280C	1	RF4-280C		1	Gh2G400 112	3	A70QS800-4	2	SC-N14	1				
	315	RHC280-4C	LR4-315C	+	LFC4-315C	-	CF4-315C	1	RF4-315C		1	GRZG400 1Ω	6	+	ļ^	SC-N3	1	SC-N14	1	SC-N4	1
	355	RHC315-4C	LR4-355C	\vdash	LFC4-315C	+	CF4-315C	1	RF4-355C		1	(2 parallels)	ľ	A70P1600-4TA	2	00-140	ľ	SC-N16		00-114	
	400	RHC355-4C	LR4-400C	\vdash	LFC4-400C	+	CF4-400C	1	RF4-400C		1	, , , , , , , , , , , , , , , , , , , ,		7.17 TOOU TIA	1			50 1110			
	500	RHC400-4C	LR4-500C	1 1	LFC4-500C	+	CF4-500C	1	RF4-500C		1							610CM-3FS	1		
	000				0 . 0000	Ι.	2 0000		0000		<u> </u>		_		_		-	2.00m or 0	لند		

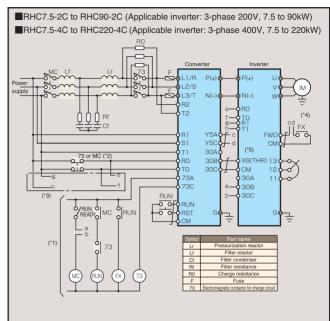
Basic Wiring Diagram

- ■RHC7.5-2C to RHC90-2C (Applicable inverter: 3-phase 200V, 7.5 to 90kW)
- ■RHC7.5-4C to RHC220-4C (Applicable inverter: 3-phase 400V, 7.5 to 220kW) *When adapting a charge BOX

- (*1) If the main power supply is 400V series, connect the step-down transformer to limit the voltage of the sequence circuit lower than 220V.
 (*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact "b" of the electromagnetic contactor for charge circuit (73 or MC).
 If 73 is SC-05, SC-4-0, or SC-5-1, use the auxiliary contact unit for the contact "b" of MC or 72
- 73.

 ('3) If the inverter is G11S or P11S with a capacity less than 22kW or VG7S with less than 15kW, the auxiliary power supply input of the inverter must be connected to the main power supply via the contact "b" of the electromagnetic contactor for charge circuit (73 or MC). If the inverter has larger capacity, connect the inverter without passing the contact "b" of 73 or MC.

 ('4) Use the sequence that a running signal is input in the inverter after the PWM converter
- becomes ready.
 (*5) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).
- ■RHC280-4C to RHC400-4C (Applicable inverter: 3-phase 400V, 280 to 400kW) supply 52 010 18 18 73A (*2) C RUN (*1) (*5)
- (*1) Connect the step-down transformer to limit the voltage of the sequence circuit lower than
- 200V.


 (*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact "b" of the electromagnetic contactor for charge
- to the main power supply via the contact "b" of the electromagnetic contactor for charge circuit (52).

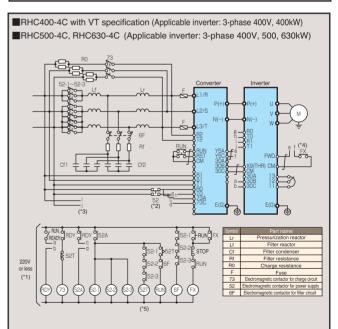
 ("3) Since the AC fan power supply receives power from R0 and T0 terminals, the power supply must be connected without passing the contact "b" of 52.

 ("4) Use the sequence that a running signal is input in the inverter after the PWM converter becomes ready.

 ("5) The 52T timer must be set to 1 sec.

 ("6) One of terminals (X1 to X9) on the inverter must be set to external alarm (THR).

- (*1) If the main power supply is 400V series, connect the step-down transformer to limit the voltage of the sequence circuit lower tan 220V.


 (*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact "b" of the electromagnetic contactor for charge circuit (73 or MC).
- circuit (73 or MC).

 If 73 is SC-05, SC-4.0, or SC-5-1, use the auxiliary contact unit for the contact "b" of MC or 73.

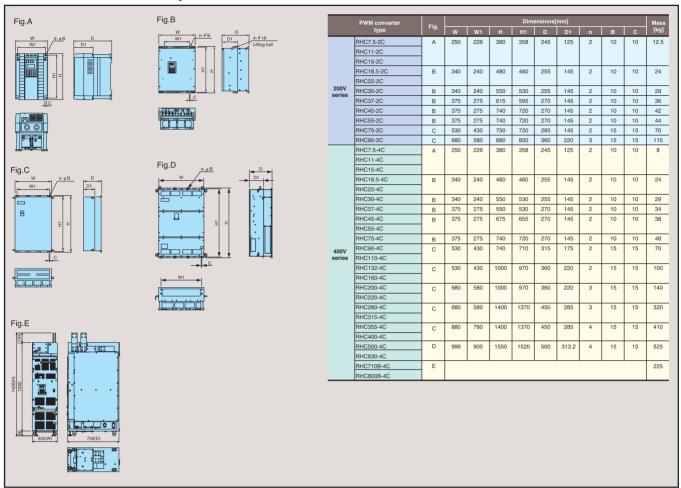
 (*3) If the inverter is G11S or P11S with a capacity less than 22kW or VG7S with less than 15kW, the auxiliary power supply input of the inverter must be connected to the main power supply via the contact "b" of the electromagnetic contactor for charge circuit (73 or MC). If the inverter has larger capacity, connect the inverter without passing the contact "b" of 73 or MC.

 (*4) Use the sequence that a running signal is input in the inverter after the PWM converter becomes readity.
- becomes ready.

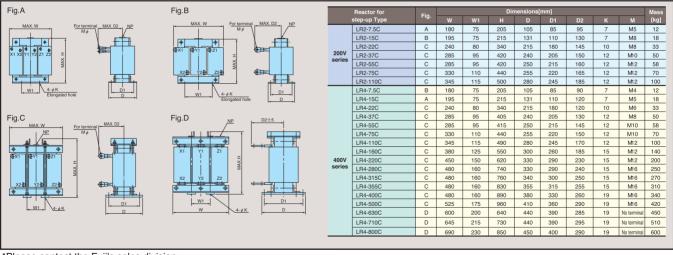
 (*5) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

- (*1) Connect the step-down transformer to limit the voltage of the sequence circuit lower than
- 200V.

 (*2) The auxiliary power supply input terminal for the PWM converter (R0, T0) must be connected to the main power supply via the contact ½b€ of the electromagnetic contactor for charge circuit (52).


 (*3) Since the AC fan power supply receives power from R0 and T0 terminals, the power supply must be connected without passing the contact ½b€ of 73 or 52.

 (*4) Use the sequence that a running signal is input in the inverter after the PWM converter becomes readv.


- (4) Ose the sequence that a running signal is input in the inverter after the PWM converter becomes ready.
 (*5) The 52T timer must be set to 1 sec.
 (*6) One of terminals (X1 to X9) on the inverter must be set to external alarm (THR).
 (*7) Be sure to arrange the phase sequence in the same order when wiring for terminals L1/R, L2/S, L3/T, R2, T2, R1, S1 and T1.

External Dimensions

PMW converter main body

<Reactor for step-up>

^{*}Please contact the Fuji's sales division.

Wiring equipment / wire sizes (Main circuit use)

Down	Nominal	Inverte	er type	MCCB o		Magı	netic co	ntactor type	a	1				ze [mm²		
Power supply	applied		,	rated cu	rrent [A]	For the	e input	For the output	Input of	circuit		t circuit		circuit		g circuit
voltage	motor	CT/HT use	VT use	With	Without	With	cuit Without	circuit CT/HT/VT	With	Without		v, w) VT	CT/HT	P(+)) VT	CT/HT	DB, N(-)) VT
Tonago	[kW]	[150%]	[110%]	DCR	reactor	DCR	reactor	use	DCR	reactor	use	use	use	use	use	use
	0.75	FRN0.75VG7S-2	_	5	10							_		_		_
	1.5	FRN1.5VG7S-2	FRN0.75VG7S-2	10	15		SC-05			2.0	0.0					
	2.2	FRN2.2VG7S-2	FRN1.5VG7S-2	10	20	SC-05		SC-05	2.0		2.0	2.0	2.0			
	3.7	FRN3.7VG7S-2	FRN2.2VG7S-2	20	30		SC-5-1			3.5				2.0		
	5.5	FRN5.5VG7S-2	FRN3.7VG7S-2	30	50		SC-N1			5.5	3.5	3.5			0.0	
	7.5	FRN7.5VG7S-2	FRN5.5VG7S-2	40	75	SC-5-1	SC-N2	SC-N1	3.5	8	5.5	5.5	3.5	3.5	2.0	0.0
	11	FRN11VG7S-2	FRN7.5VG7S-2	50	100	SC-N1	SC-N2S	30-N1	5.5	14	8	8	8	8		2.0
	15	FRN15VG7S-2	FRN11VG7S-2	75	125	SC-N2	SC-N3	SC-N2S	8	22	14	14	14	14		
200V	18.5	FRN18.5VG7S-2	FRN15VG7S-2	100	150	SC-N2S	SC-N4	30-N23	14	38(*1)	14	14	22	22		
	22	FRN22VG7S-2	FRN18.5VG7S-2	100	175	30-1123	SC-N5	SC-N3	14	30 (*1)	22	22	22	22		
	30	FRN30VG7S-2	FRN22VG7S-2	150	200	SC-N4	SC-N7	SC-N4	38 (*1)	60 (*3)		38 (*1)	38	38(*1)	3.5	
	37	_	FRN30VG7S-2	175	250	SC-N5		SC-N5	38	60	38	38	60	60	5.5	3.5
		FRN37VG7S-2		170	200		SC-N8								5.5	0.5
	45	FRN45VG7S-2	FRN37VG7S-2	200	300	SC-N7		SC-N7	60	100	60	60	100	100		5.5
	55	FRN55VG7S-2	FRN45VG7S-2	250	350	SC-N8	SC-N11	SC-N8	100		100	100			8	
	75	FRN75VG7S-2	FRN55VG7S-2	350		SC-N11		SC-N11			150		150	150 (*2)	14	8
	90	FRN90VG7S-2	FRN75VG7S-2	400	_		_		150	_		150	200	200	22	14
	110		FRN90VG7S-2	500	00	SC-N12	00.05	SC-N12	200		_	200		250	_	
	3.7	FRN3.7VG7S-4	EDNO 71/070 4	10	20		SC-05	00.05		2.0						
	5.5	FRN5.5VG7S-4	FRN3.7VG7S-4	15	30 40 SC-	SC-05	SC-4-0 SC-5-1	SC-05	2.0	0.5	2.0	2.0	2.0	0.0		
	7.5	FRN7.5VG7S-4 FRN11VG7S-4	FRN5.5VG7S-4 FRN7.5VG7S-4	20 30	50			SC-4-0	-	3.5 5.5			3.0	2.0		
	11 15	FRN15VG7S-4	FRN11VG7S-4	40	60	SC-5-1	SC-N1	SC-5-1	3.5	8	3.5	3.5	3.5	3.5		
	18.5	FRN18.5VG7S-4	FRN15VG7S-4	40	75		SC-N2		0.0	0	5.5	5.5	5.5	5.5	2.0	
	22	FRN22VG7S-4	FRN18.5VG7S-4	50	100	SC-N1	SC-N2S	SC-N1	5.5	14	8	8	8	8	2.0	2.0
	30	FRN30VG7S-4	FRN22VG7S-4	75	125	SC-N2	SC-N3	SC-N2	8				14	14		
	37	FRN37VG7S-4	FRN30VG7S-4	100	125	SC-N2S		SC-N2S	14	22	14	14				
	45	FRN45VG7S-4	FRN37VG7S-4	100	150		SC-N4	SC-N3		38	22	22	22	22		
	55	FRN55VG7S-4	FRN45VG7S-4	125	200	SC-N3	SC-N5	SC-N4	22	60	38	38	38	38	3.5	
	75	FRN75VG7S-4	FRN55VG7S-4	175		SC-N4		SC-N5	38							
400V	90	FRN90VG7S-4	FRN75VG7S-4	200		00 NZ		SC-N7			60	60	60	60	5.5	3.5
	110	FRN110VG7S-4	FRN90VG7S-4	250		SC-N7		CC NO	60		100	400	100	100	8	5.5
	132	FRN132VG7S-4	FRN110VG7S-4	300		SC-N8		SC-N8	100		100	100	150	100	1.4	8
	160	FRN160VG7S-4	FRN132VG7S-4	350		SC-N11		SC-N11	150		150	150	150	150	14	14
	200	FRN200VG7S-4	FRN160VG7S-4	500				SC-N12	150		200	200	250	200	22	14
	220	FRN220VG7S-4	FRN200VG7S-4	500		SC-N12		00-1112	200		200	200	250	250		
	250	FRN250VG7S-4	_	600					250		250	250	325	325		
	280	FRN280VG7S-4	FRN220VG7S-4	000	_		_			_	150×2	325				22
	300		FRN250VG7S-4	700		SC-N14		SC-N14	325		325		200×2	200×2	38	
	315	FRN315VG7S-4		, 50					150×2			130//2				
	355		FRN315VG7S-4	800					200×2			200×2	250×2	250×2		38
	400		FRN355VG7S-4			SC-N16		SC-N16				250×2	325×2	325×2	60	60
	500		FRN400VG7S-4	1200		, ,			325×2			325×2			100	
	630	FRN630VG7S-4	FRN500VG7S-4	1400		(*3)		()	325×3		325×3	325×3		-	- 150	100
	710	_	FRN630VG7S-4	1600				(*3)	325×4					325×4		100
	710	FRN710BVG7S-4DC	_	_							325×4	325×4	10t×1 Copper b			_
	800	FRN800BVG7S-4DC	_	_		_			_				oophei r	al willing	_	_

NOTES:

- For molded-case circuit breakers (MCCBs) or earth-leakage circuit breakers (ELCBs), the required frame type and series depends on factors such as the transformer capacity of the facility. Refer to catalogs and data sheets to select optimal ones. Also, refer to data sheets on ECLB for rated sensitive current. The rated currents for MCCB and ELCB on the table above are for FUJI SA B/ and SA R/.
- The recommended wire sizes are based on a condition where the temperature inside the panel is 50°C or less.
- Data on the table above are obtained with 600V HIV insulation cables (Allowable temp. 75°C).
- · Data on the table above may change under different conditions such as different ambient temperature or different power supply voltage.
- *1) Use the crimp terminal 38-S6 made by J.S.T. Mfg Co., Ltd.
- *2) Use the crimp terminal CB150-10 for low-voltage switch specified in JEM1399.
- *3) Please contact the Fuji's sales division.

Guideline for Suppressing Harmonics

Application to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage"

Our FRENIC-5000VG7 series are the products specified in the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage." When you enter into a new contract with an electric power company or update a contract, you are requested by the electric power company to submit an accounting statement form.

(1) Scope of regulation

In principle, the guideline applies to the customers that meet the following two conditions:

- · The customer receives high voltage or special high voltage.
- The "equivalent capacity" of the converter load exceeds the standard value for the receiving voltage (50kVA at a receiving voltage of 6.6kV).

(2) Regulation method

The level (calculated value) of the harmonic current that flows from the customer's receiving point out to the system is subjected to the regulation. The regulation value is proportional to the contract demand. The regulation values specified in the guideline are shown in Table 1.

Table 1 Upper limits of harmonic outflow current per kW of contract demand [mA/kW]

Receiving voltage	5th	7th	11th	13th	17th	19th	23th	Over 25th
6.6kV	3.5	2.5	1.6	1.3	1.0	0.90	0.76	0.70
22kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36

1. Calculation of Equivalent Capacity (Pi)

Although the equivalent capacity (Pi) is calculated using the equation of (input rated capacity) x (conversion factor), catalog of conventional inverters do not contain input rated capacities. A description of the input rated capacity is shown below

(1) "Inverter rated capacity" corresponding to "Pi"

- · Calculate the input fundamental current I1 from the kW rating and efficiency of the load motor, as well as the efficiency of the inverter. Then, calculate the input rated capacity as shown below: Input rated capacity = $\sqrt{3}$ x (power supply voltage) x I₁ x 1.0228/1000[kVA] Where 1.0228 is the 6-pulse converter's value obtained by (effective current) /
- · When a general-purpose motor or inverter motor is used, the appropriate value shown in Table 2 can be used. Select a value based on the kW rating of the motor used, irrespective of the inverter type.

Table 2 "Input rated capacities" of general-purpose inverters determined by the nominal applied motors

Nominal applie	d motor [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Pi	200V	0.57	0.97	1.95	2.81	4.61	6.77	9.07	13.1	17.6	21.8	25.9
[kVA]	400V	0.57	0.97	1.95	2.81	4.61	6.77	9.07	13.1	17.6	21.8	25.9
Nominal applie	d motor [kW]	30	37	45	55	75	90	110	132	160	200	220
Pi	200V	34.7	42.8	52.1	63.7	87.2	104	127				
[kVA]	400V	34.7	42.8	52.1	63.7	87.2	104	127	153	183	229	252
Nominal applie	d motor [kW]	250	280	315	355	400	450	500	530	560	630	
Pi	200V											
[kVA]	400V	286	319	359	405	456	512	570	604	638	718	

(2) Values of "Ki (conversion factor)"

· Depending on whether an optional ACR (AC REACTOR) or DCR (DC REACTOR) is used, apply the appropriate conversion factor specified in the appendix to the guideline. The values of the converter factor are shown in Table 3.

Table 3 "Conversion factors Ki" for general-purpose inverters determined by reactors

			0 1 1				
	Circuit category	Circ	cuit type	Conversion factor Ki	Main applications		
			Without a reactor	K31=3.4	General-purpose inverters		
		Three-phase bridge 3	With a reactor (ACR)	K32=1.8	Elevators		
			With a reactor (DCR)		 Refrigerators, air conditioning systems 		
			With reactors (ACR and DCR)	K34=1.4	Other general appliances		

2. Calculation of Harmonic Current

(1) Value of "input fundamental current"

- · Apply the appropriate value shown in Table 4 based on the kW rating of the motor, irrespective of the inverter type or whether a reactor is used.
- * If the input voltage is different, calculate the input fundamental current in inverse proportion to the voltage.

Table 4 "Input fundamental currents" of general-purpose inverters determined by the nominal applied motors

					о. оп. р с	1			,		1.1	
Nominal applied	motor [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Input	200V	1.62	2.74	5.50	7.92	13.0	19.1	25.6	36.9	49.8	61.4	73.1
fundamental current [A]	400V	0.81	1.37	2.75	3.96	6.50	9.55	12.8	18.5	24.9	30.7	36.6
6.6 kV converted	value [mA]	49	83	167	240	394	579	776	1121	1509	1860	2220
Nominal applied	motor [kW]	30	37	45	55	75	90	110	132	160	200	220
Input fundamental	200V	98.0	121	147	180	245	293	357				
current [A]	400V	49.0	60.4	73.5	89.9	123	147	179	216	258	323	355
6.6 kV converted	value [mA]	2970	3660	4450	5450	7450	8910	10850	13090	15640	19580	21500
Nominal applied	motor [kW]	250	280	315	355	400	450	500	530	560	630	
Input fundamental	200V											
current [A]	400V	403	450	506	571	643	723	804	852	900	1013	
6.6 kV converted	value [mA]	24400	27300	30700	34600	39000	43800	48700	51600	54500	61400	

(2) Calculation of harmonic current

Table 5 Generated harmonic current [%], 3-phase bridge (capacitor smoothing)

Degree	5th	7th	11th	13th	17th	19th	23th	25th
Without a reactor	65	41	8.5	7.7	4.3	3.1	2.6	1.8
With a reactor (ACR)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
With a reactor (DCR)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
With reactors (ACR and DCR)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

- DCR: Accumulated energy equal to 0.08 to 0.15ms (100% load conversion)
- Smoothing capacitor: Accumulated energy equal to 15 to 30ms (100% load conversion)

n nth harmonic current [A] = Fundamental current [A] x Generated nth harmonic current [%]

Calculate the harmonic current of each degree using the following equation:

(3) Maximum availability factor

- · For a load for elevators, which provides intermittent operation, or a load with a sufficient designed motor rating, reduce the current by multiplying the equation by the "maximum availability factor" of the load.
- The "maximum availability factor of an appliance" means the ratio of the capacity of the harmonic generator in operation at which the availability reaches the maximum, to its total capacity, and the capacity of the generator in operation is an average for 30 minutes.
- In general, the maximum availability factor is calculated according to this definition, but the standard values shown in Table 6 are recommended for inverters for building equipment

Table 6 Availability factors of inverters, etc. for building equipment (standard values)

Equipment type	Inverter capacity category	Single inverter availability factor
Air conditioning avotom	200kW or less	0.55
Air conditioning system	Over 200kW	0.60
Sanitary pump		0.30
Elevator		0.25
Refrigerator, freezer	50kW or less	0.60
UPS (6-pulse)	200kVA	0.60

[Correction coefficient according to contract demand level]

ï Since the total availability factor decreases with increase in the building scale, calculating reduced harmonics with the correction coefficient's defined in Table 7 below is permitted.

Table 7 Correction coefficient according to the building scale

Contract demand [kW]	Correction coefficient b
300	1.00
500	0.90
1000	0.85
2000	0.80

*If the contract demand is between two specified values shown in Table 7, calculate the value by interpolation.

(4) Degree of harmonics to be calculated

Calculate only the "5th and 7th" harmonic currents

To all our customers who purchase Fuji Electric products included in this catalog:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.

In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.

Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

- (1) The product warranty period is "1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier.
- (2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
- (3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is "6 months from the date that repairs are completed."

1-2 Warranty range

- (1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
 - 1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
 - 2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
 - 3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
 - 4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
 - 5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
 - 6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
 - 7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
 - 8) The product was not used in the manner the product was originally intended to be used.
 - 9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
- (2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
- (3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7-year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

Variation

●The rich lineup of the active Fuji inverter family

Applications	Series Name (Catalog No.)	Features
General Industrial equipment	FRENIC5000VG7S (MEH405)	High performance, vector control inverter (Three-phase 200V: 0.75 to 90kW, Three-phase 400V: 3.7 to 630kW) • A high precision inverter with rapid control response and stable torque characteristics. • Abundant functions and a full range of options make this inverter ideal for a broad range of general industrial systems. • The auto tuning function makes vector control operation possible even for general-purpose motors.
	FRENIC-MEGA (MEH642 for Asian models) (MEH655 for European models)	High-performance, multi-functional inverter (Three-phase 400V: 0.4 to 630kW,Three-phase 200V: 0.4 to 90kW) Loaded with vector control which is the peak of general purpose inverters. Prepared three types; the basic type, EMC filter built-in type. Maintainability is further improved with built-in USB port(option). The short-time acceleration and deceleration become enabled with achieving better rating of overload ratings at HD spec: 200% for 3 sec and 150% for 1 min and at LD spec: 120% for 1 min.
	FRENIC-Eco (MEH442)	Fan, pump inverter (for variable torque load) (Three-phase 200V: 0.75 to 110kW, Three-phase 400V: 0.75 to 560kW) Developed exclusively for controlling variable torque load like fans and pumps. Full of new functions such as auto energy saving, PID control, life warning, and switching sequence to the commercial power supply. Ideal for air conditioners, fans, pumps, etc. which were difficult to use with conventional general-purpose inverters because of cost or functions.
	FRENIC-Lift (MEH426)	Inverter designed for elevator (Three-phase 400V: 5.5 to 22kW) The inverter provides optimal control of passenger elevators. • PG feedback provided as a standard function • Overload rating: 200% for 10s • High performance vector control Current response (ACR): 500Hz
	FRENIC-Multi (MEH652)	High performance, compact inverter (Three-phase 200V: 0.1 to 15kW, Single-phase 200V: 0.1 to 2.2kW, Three-phase 400V: 0.4 to 15kW) The inverter featuring environment-friendly and long life design (10 years) complies with R0HS Directives (products manufactured beginning in the autumn of 2005). With expanded capacity range, abundant model variation, and simple and thorough maintenance, the Multi is usable for a wide range of applications. Equipped with the functions optimum for the operations specific to vertical and horizontal conveyance, such as hit-and-stop control, brake signal, torque limit, and current limit.
	FRENIC-Mini (MEH451 for EN)	Compact inverter (Three-phase 200V: 0.1 to 3.7kW, Three-phase 400V: 0.4 to 3.7kW, Single-phase 200V: 0.1 to 2.2kW, Single-phase 100V: 0.1 to 0.75kW) A frequency setting device is standard-equipped, making operation simple. Loaded with auto torque boost, current limiting, and slip compensation functions, all of which are ideal for controlling traverse conveyors. Loaded with the functions for auto energy saving operation and PID control, which are ideal for controlling fans and pumps.

When running general-purpose motors

Driving a 400V general-purpose motor

When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

• Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequency control to avoid resonance points.

Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise

When running special motors

• High-speed motors

When driving a high-speed motor while setting the frequency higher than 120Hz, test the combination with another motor to confirm the safety of high-speed motors.

• Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

• Submersible motors and pumps

These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the

These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

Geared motors

If the power transmission mechanism uses an oil-

lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

Synchronous motors

It is necessary to use software suitable for this motor type. Contact Fuji for details.

· Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C.

The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

Protecting the motor

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

Discontinuance of power-factor correcting capacitor
 Do not mount power factor correcting capacitors in
 the inverter (primary) circuit. (Use the DC
 REACTOR to improve the inverter power factor.) Do

not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

· Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

. Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20m.

Wiring length between inverter and motor

If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL). When wiring is longer than 50m, and Dynamic torque-vector control or vector with PG is selected, execute off-line tuning.

• Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

· Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

Driving special motors

Select an inverter that meets the following condition:
Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Fuji Electric Systems Co., Ltd.

Starzen Shinagawa Building, 2-4-13, Konan, Minato-ku, Tokyo 108-0075, Japan Phone: +81-3-6717-0617 Fax: +81-3-6717-0585